Skip to main content
Log in

Tracing the Effects of Calcium, Stannum, and Zinc Additions on the Creep Resistance of Mg–Al-Based Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the effects of Ca, Sn, and Zn additions on the creep resistance of Mg–Al-based alloys were systematically traced at 453 K. The best creep resistance was obtained in Mg–6Al–1Ca (AX61) alloy followed by Mg–6Al–1Zn (AZ61) and Mg–6Al–1Sn (AT61) alloys, albeit the highest yield stress was obtained in AZ61 alloy at both room temperature and creep temperature. Specifically, for AT61 alloy, unsharp solution strengthening, ineffective precipitation strengthening, and long slip traces derived from prismatic 〈a〉 dislocations were responsible for the fastest creep rate and the most diminished creep resistance. For AZ61 alloy, the highest fraction of dynamic precipitates was achieved, creating the most serious depletion of solution strengthening. But due to the close connection between precipitates and dislocations, the effective precipitation strengthening avoided the weak creep resistance like the case in AT61 alloy. For AX61 alloy, strong solution strengthening and stable dislocation networks composed by prismatic 〈a〉 dislocations simultaneously reduced the creep rate. The limited loss of solution strengthening and the interrupted basal slip transitivity between neighboring grains also enhanced the creep resistance. Thus, it is strongly recommended that adding Ca element into Mg–Al-based alloys has a positive effect on the creep resistance via controlling solution strengthening and dislocation morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q. Huo, X. Yang, J. Ma, H. Sun, J. Qin, and Y. Jiang: Mater. Charact., 2013, vol. 29, pp. 43–51.

    Article  Google Scholar 

  2. J.U. Lee, Y.J. Kim, and S.H. Park: Mater. Sci. Eng. A, 2022, vol. 854, p. 143814.

    Article  CAS  Google Scholar 

  3. A. Jamali, A. Ma, and J. LLorca: Acta Mater., 2022, vol. 239, p. 118263.

    Article  CAS  Google Scholar 

  4. T. Chen, S. Hu, S. Li, and Q. Huo: Mater. Sci. Eng. A, 2022, vol. 857, p. 144056.

    Article  CAS  Google Scholar 

  5. P. Nautiyal, J. Jain, and A. Agarwal: Mater. Sci. Eng. A, 2015, vol. 630, pp. 131–38.

    Article  CAS  Google Scholar 

  6. S. Spigarelli: Scripta Mater., 2000, vol. 42, pp. 397–402.

    Article  CAS  Google Scholar 

  7. J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009–15.

    Article  CAS  Google Scholar 

  8. B. Amir Esgandari, H. Mehrjoo, B. Nami, and S.M. Miresmaeili: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5018–24.

    Article  Google Scholar 

  9. S.M. Ashrafizadeh, R. Mahmudi, and A.R. Geranmayeh: Mater. Sci. Eng. A, 2020, vol. 790, p. 139712.

    Article  CAS  Google Scholar 

  10. N. Kashefi and R. Mahmudi: Mater. Des., 2012, vol. 39, pp. 200–10.

    Article  CAS  Google Scholar 

  11. A.R. Geranmayeh and R. Mahmudi: Mater. Sci. Eng. A, 2014, vol. 614, pp. 311–18.

    Article  CAS  Google Scholar 

  12. J. Majhi and A.K. Mondal: Mater. Sci. Eng. A, 2019, vol. 744, pp. 691–703.

    Article  CAS  Google Scholar 

  13. C.R. Hutchinson, J.F. Nie, and S. Gorsse: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2093–2105.

    Article  CAS  Google Scholar 

  14. P. Hidalgo-Manrique and J.D. Robson: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3855–67.

    Article  Google Scholar 

  15. S.M. Ashrafizadeh and R. Mahmudi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5957–68.

    Article  Google Scholar 

  16. F. Khomamizadeh, B. Nami, and S. Khoshkhooei: Metall Mater. Trans. A, 2005, vol. 36A, pp. 3489–94.

    Article  CAS  Google Scholar 

  17. F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3488–98.

    Article  Google Scholar 

  18. T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, and S. Kamado: Acta Mater., 2017, vol. 130, pp. 261–70.

    Article  CAS  Google Scholar 

  19. M.R. Sahu, T.S.S. Kumar, and U. Chakkingal: J. Magnesium Alloys, 2022, vol. 10, pp. 2094–2117.

    Article  CAS  Google Scholar 

  20. S. Li, Q. Huo, S. Hu, C. Wang, Z. Zhang, Y. Zhang, T. Chen, and X. Yang: Mater. Charact., 2023, vol. 195, p. 112534.

    Article  CAS  Google Scholar 

  21. J. Li, X. Zhou, J. Su, B. Breitbach, M.L. Chwałek, H. Wang, and G. Dehm: Mater. Sci. Eng. A, 2022, vol. 856, p. 143898.

    Article  CAS  Google Scholar 

  22. T.T. Sasaki, K. Oh-ishi, T. Ohkubo, and K. Hono: Scripta Mater., 2006, vol. 55, pp. 251–54.

    Article  CAS  Google Scholar 

  23. T.T. Sasaki, K. Oh-ishi, T. Ohkubo, and K. Hono: Mater. Sci. Eng. A, 2011, vol. 530, pp. 1–8.

    Article  CAS  Google Scholar 

  24. R.E. Schäublin, M. Becker, M. Cihova, S.S.A. Gerstl, D. Deiana, C. Hébert, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler: Acta Mater., 2022, vol. 239, p. 118223.

    Article  Google Scholar 

  25. B. Kondori and R. Mahmudi: Mater. Sci. Eng. A, 2017, vol. 700, pp. 438–47.

    Article  CAS  Google Scholar 

  26. M.A. Gibson, X. Fang, C.J. Bettles, and C.R. Hutchinson: Scripta Mater., 2010, vol. 63, pp. 899–902.

    Article  CAS  Google Scholar 

  27. D.H. Kang, S.S. Park, and N.J. Kim: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 555–60.

    Article  Google Scholar 

  28. J. Miao, C. Zhang, A.D. Klarner, J. Zhang, E. Cinkilic, F. Zhang, and A.A. Luo: Materialia, 2022, vol. 21, p. 101348.

    Article  CAS  Google Scholar 

  29. J. Li, X. Zhou, A. Breen, Z. Peng, J. Su, P. Kürnsteiner, M.J.D. Correa, M.L. Chwałek, H. Wang, D. Holec, J. Mayer, and G. Dehm: J. Alloys Compd., 2022, vol. 928, p. 167177.

    Article  CAS  Google Scholar 

  30. A.A. Luo, P. Fu, L. Peng, X. Kang, Z. Li, and T. Zhu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 360–68.

    Article  Google Scholar 

  31. A.S.H. Kabir, M. Sanjari, J. Su, I. Jung, and S. Yue: J. Mater. Sci., 2016, vol. 51, pp. 1600–09.

    Article  CAS  Google Scholar 

  32. S.M. Zhu, B.L. Mordike, and J.F. Nie: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 583–86.

    Article  Google Scholar 

  33. B.H. Kim, K.C. Park, Y.H. Park, and I.M. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 808–14.

    Article  Google Scholar 

  34. A. Bahmani, S. Arthanari, and K.S. Shin: J. Magnesium Alloys, 2019, vol. 7, pp. 38–46.

    Article  CAS  Google Scholar 

  35. S. Avraham, A. Katsman, and M. Bamberger: J. Mater. Sci., 2011, vol. 46, pp. 6941–51.

    Article  CAS  Google Scholar 

  36. T. Nakata, C. Xu, Y. Uehara, T.T. Sasaki, and S. Kamado: J. Alloys Compd., 2019, vol. 782, pp. 304–14.

    Article  CAS  Google Scholar 

  37. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi: J. Alloys Compd., 2015, vol. 632, pp. 94–102.

    Article  CAS  Google Scholar 

  38. Y. Zhang, T. Chen, J. Kuang, and Q. Huo: Metall. Mater. Trans. A, 2022, vol. 3A, pp. 747–53.

    Article  Google Scholar 

  39. C. Wang, Y. Zhang, Q. Huo, Z. Zhang, J. Tang, A. Hashimoto, and X. Yang: Mater. Sci. Eng. A, 2021, vol. 800, p. 140309.

    Article  CAS  Google Scholar 

  40. S. Hu, Q. Huo, C. Wang, Y. Zhang, Z. Zhang, S. Xu, and X. Yang: J. Alloys Compd., 2022, vol. 895, p. 162666.

    Article  CAS  Google Scholar 

  41. Y. Zhang, Q. Huo, Z. Zhang, C. Wang, H. Nagaumi, and X. Yang: Mater. Sci. Eng. A, 2022, vol. 839, p. 142894.

    Article  CAS  Google Scholar 

  42. D. Nagarajan: Mater. Sci. Eng. A, 2022, vol. 860, p. 144292.

    Article  CAS  Google Scholar 

  43. B. Kim, B. Kang, Y. Park, and I. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5747–53.

    Article  CAS  Google Scholar 

  44. S.M. Jo, S.D. Kim, T. Kim, Y. Go, C. Yang, B.S. You, and Y.M. Kim: J. Alloys Compd., 2018, vol. 749, pp. 794–802.

    Article  CAS  Google Scholar 

  45. N. Li, C. Wang, M.A. Monclús, L. Yang, and J.M. Molina-Aldareguia: Acta Mater., 2021, vol. 221, p. 117374.

    Article  CAS  Google Scholar 

  46. H.S. Kim and W.J. Kim: Corros. Sci., 2013, vol. 75, pp. 228–38.

    Article  CAS  Google Scholar 

  47. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–5103.

    Article  CAS  Google Scholar 

  48. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew: Mater. Sci. Eng. A, 2008, vol. 486, pp. 545–55.

    Article  Google Scholar 

  49. G. Li, J. Zhang, R. Wu, S. Liu, B. Song, Y. Jiao, Q. Yang, and L. Hou: J. Alloys Compd., 2019, vol. 777, pp. 1375–85.

    Article  CAS  Google Scholar 

  50. L. Gao, R.S. Chen, and E.H. Han: J. Alloys Compd., 2009, vol. 481, pp. 379–84.

    Article  CAS  Google Scholar 

  51. S. Abaspour, V. Zambelli, M. Dargusch, and C.H. Cáceres: Mater. Sci. Eng. A, 2016, vol. 673, pp. 114–21.

    Article  CAS  Google Scholar 

  52. B.Q. Shi, R.S. Chen, and W. Ke: J. Alloys Compd., 2011, vol. 509, pp. 3357–62.

    Article  CAS  Google Scholar 

  53. J. Miao, W. Sun, A.D. Klarner, and A.A. Luo: Scripta Mater., 2018, vol. 154, pp. 192–96.

    Article  CAS  Google Scholar 

  54. M. Sarebanzadeh, A. Orozco-Caballero, and J. LLorca: Acta Mater., 2023, vol. 243, p. 118536.

    Article  CAS  Google Scholar 

  55. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado: Acta Mater., 2015, vol. 88, pp. 232–44.

    Article  Google Scholar 

  56. Z. Zhang, Q. Huo, Z. Xiao, Y. Zhang, K. Li, H. Nagaumi, and X. Yang: J. Mater. Sci., 2022, vol. 57, pp. 2229–42.

    Article  CAS  Google Scholar 

  57. J. Li, J. Wu, L. Jin, M. Celikin, F. Wang, S. Dong, and J. Dong: Sci. Rep., 2021, vol. 11, p. 2860.

    Article  CAS  Google Scholar 

  58. Y. Liu, J. Yan, D. Xie, Y. Shen, J. Wang, and G. Zhu: Scripta Mater., 2021, vol. 191, pp. 86–89.

    Article  CAS  Google Scholar 

  59. D. Zhao, X. Ma, S. Picak, I. Karaman, and K. Xie: Scripta Mater., 2020, vol. 179, pp. 49–54.

    Article  CAS  Google Scholar 

  60. C. Wang, H. Zhang, H. Wang, G. Liu, and Q. Jiang: Scripta Mater., 2013, vol. 69, pp. 445–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports received from the National Natural Science Foundation of China (Grant Nos. 51974376 and 52071344), the Natural Science Foundation of Hunan Province (Grant No. 2021JJ20063), and the Distinguished Professor Project of Central South University (Grant No. 202045009).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghuan Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Huo, Q., Hu, S. et al. Tracing the Effects of Calcium, Stannum, and Zinc Additions on the Creep Resistance of Mg–Al-Based Alloys. Metall Mater Trans A 54, 2730–2743 (2023). https://doi.org/10.1007/s11661-023-07050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07050-8

Navigation