Skip to main content

Advertisement

Log in

Effects of Zr Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of 0.2, 0.6, and 1.0 wt pct Zr additions on the microstructure and creep behavior of AZ91 Mg alloy were investigated by impression tests carried out under constant punching stress (σ imp) in the range 100 to 650 MPa, corresponding to the modulus-compensated stress levels of \( {{0.007 \le \sigma_{\text{imp}} } \mathord{\left/ {\vphantom {{0.007 \le \sigma_{\text{imp}} } {G \le 0.044}}} \right. \kern-\nulldelimiterspace} {G \le 0.044}} \), at temperatures in the range 425 K to 570 K (152 °C to 297 °C). The alloy containing 0.6 wt pct Zr showed the best creep resistance mainly due to the favorable formation of Al3Zr2 and Al2Zr intermetallic compounds, reduction in the volume fraction of the eutectic β-Mg17Al12 phase, and solid solution hardening effects of Al in the Mg matrix. Based on the obtained stress exponents of 4.2 to 6.5 and activation energies of 90.7 to 127.1 kJ/mol, it is proposed that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb compete. Dislocation climb controlled by dislocation pipe diffusion prevails at high stresses, whereas climb of edge dislocations is the controlling mechanism at low stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. MAGREX 36 is a trademark of Foseco, Staffordshire, United Kingdom.

References

  1. I.J. Polmear: Light Alloys, 2nd ed., Chapman and Hall, Inc., New York, NY, 1989, pp. 170–88.

    Google Scholar 

  2. K.U. Kainer: Magnesium Alloys and Technology, Wiley-VCH, Weinheim, 2003.

    Book  Google Scholar 

  3. A.A. Luo and M.O. Pekguleryuz: J. Mater. Sci., 1994, vol. 29, pp. 5259–71.

    Article  CAS  ADS  Google Scholar 

  4. M.O. Pekguleryuz and A.A. Kaya: Adv. Eng. Mater., 2003, vol. 5, pp. 866–78.

    Article  CAS  Google Scholar 

  5. A.A. Luo: Int. Mater. Rev., 2004, vol. 49, pp. 13–30.

    Article  CAS  Google Scholar 

  6. D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, and W. Dengyun: Mater. Sci. Eng., 2005, vol. A356, pp. 1–7.

    Google Scholar 

  7. Y. Guangyin, S. Yangshan, and D. Wenjiang: Mater. Sci. Eng., 2001, vol. A308, pp. 38–44.

    Google Scholar 

  8. Y. Guangyin, S. Yangshan, and Z. Weiming: J. Mater. Sci. Lett., 1999, vol. 18, pp. 2055–57.

    Article  Google Scholar 

  9. A.A. Luo, M.P. Balogh, and B.R. Powell: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 567–74.

    Article  Google Scholar 

  10. S.M. Zhu, B.L. Mordike, and J.F. Nie: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1221–29.

    Article  CAS  Google Scholar 

  11. S.M. Zhu, B.L. Mordike, and J.F. Nie: Mater. Sci. Eng., 2008, vols. A483–A484, pp. 583–86.

    Google Scholar 

  12. C.C. Jain and C.H. Koo: Mater. Trans., 2006, vol. 47, pp. 433–39.

    Article  CAS  Google Scholar 

  13. S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, and T.B. Abbott: Scripta Mater., 2008, vol. 58, pp. 477–80.

    Article  CAS  Google Scholar 

  14. C.J. Boehlert: J. Mater. Sci., 2007, vol. 42, pp. 3675–84.

    Article  CAS  ADS  Google Scholar 

  15. M.Y. Zheng, S.W. Xu, X.G. Qiao, K. Wu, S. Kamado, and Y. Kojima: Mater. Sci. Eng., 2008, vols. A483–484, pp. 564–67.

    Google Scholar 

  16. E.H. Aigeltinger and R.C. Gifkins: J. Mater. Sci., 1977, vol. 12, pp. 915–18.

    Article  CAS  ADS  Google Scholar 

  17. T.G. Langdon: Mater. Sci. Eng., 2000, vol. A 283, pp. 266–73.

    CAS  Google Scholar 

  18. F. Kabirian and R. Mahmudi: Adv. Eng. Mater., 2009, vol. 11 pp. 189–93.

    Article  CAS  Google Scholar 

  19. S.N.G. Chu and J.C.M. Li: J. Mater. Sci., 1977, vol. 12, pp. 2200–08.

    Article  CAS  ADS  Google Scholar 

  20. H. Deming, C. Yungui, T. Yongbai, L. Hongmei, and N. Gao: Mater. Lett., 2007, vol. 61, pp. 1015–19.

    Article  Google Scholar 

  21. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu: Mater. Sci. Eng., 2007, vol. A464, pp. 124–28.

    Article  CAS  Google Scholar 

  22. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu: J. Alloys Compd., 2007, vol. 440, pp. 122–26.

    Article  CAS  ADS  Google Scholar 

  23. L.L. Peng, F.Q. Yang, J.F. Nie, and J.C.M. Li: Mater. Sci. Eng., 2005, vols. A410–A411, pp. 472–77.

    Google Scholar 

  24. F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 116–27.

    Article  CAS  ADS  Google Scholar 

  25. F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2190–2201.

    Article  CAS  ADS  Google Scholar 

  26. B. Kondori and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2007–15.

    Article  CAS  ADS  Google Scholar 

  27. G. Nayyeri and R. Mahmudi: Mat. Sci. Eng. A, 2010, vol. 527, pp. 669–76.

    Article  Google Scholar 

  28. R. Mahmudi, A.R. Geranmayeh, and A. Rezaee-Bazzaz: J. Alloys Compd., 2007, vol. A427, pp. 124–29.

    Article  Google Scholar 

  29. W. Blum, Y.J. Li, X.H. Zeng, P. Zhang, B. Von Grossmann, and C. Haberling: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1721–28.

    Article  CAS  ADS  Google Scholar 

  30. P. Sepehrband, R. Mahmudi, and F. Khomamizadeh: Scripta Mater., 2005, vol. 52, pp. 253–57.

    Article  CAS  Google Scholar 

  31. J.D. Robson and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 599–613.

    Article  CAS  Google Scholar 

  32. Y.C. Lee, A.K. Dahle, and D.H. StJohn: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2895–2906.

    Article  CAS  ADS  Google Scholar 

  33. R.L. Crosby and L.W. Higley: U.S. Bureau of Mines, Rep. Invest., 1964, pp. 1–23.

  34. Y. Miyahara, K. Matsubara, Z. Horita, and T.G. Langdon: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1705–11.

    Article  CAS  ADS  Google Scholar 

  35. S.C. Wang and C.P. Chou: J. Mater. Proc. Technol., 2008, vol. 197, pp. 116–21.

    Article  CAS  Google Scholar 

  36. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. ASM, 1969, vol. 62, pp. 155–79.

    CAS  Google Scholar 

  37. K. Ishikawa, H. Watanabe, and T. Mukai: Mater. Lett., 2005, vol. 59, pp. 1511–15.

    Article  CAS  Google Scholar 

  38. T. Reinikainen and J. Kivilahti: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 123–32.

    Article  CAS  Google Scholar 

  39. R. Mahmudi, A. Rezaee-Bazzaz, and H.R. Banaie-Fard: J. Alloys Compd., 2007, vol. 429, pp. 192–97.

    Article  CAS  Google Scholar 

  40. H.K. Kim and W.J. Kim: J. Mater. Sci., 2007, vol. 42, pp. 6171–76.

    Article  CAS  ADS  Google Scholar 

  41. F.A. Mohamed and T.G. Langdon: Acta Metall., 1974, vol. 22, pp. 779–88.

    Article  CAS  Google Scholar 

  42. P. Yavari and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 2181–96.

    Article  CAS  Google Scholar 

  43. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 99–105.

    Article  CAS  Google Scholar 

  44. H.J. Frost and M.F. Ashby: Deformation Mechanisms Maps, Pergamon Press, London, 1982, pp. 44–48.

    Google Scholar 

  45. N. Ishimatsu, Y. Terada, T. Sato, and K. Ohori: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 243–48.

    Article  CAS  ADS  Google Scholar 

  46. O.D. Sherby and P.M. Burke: Prog. Mater. Sci., 1967, vol. 1, pp. 325–90.

    Google Scholar 

  47. G. Nayyeri and R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2087–98.

    Article  Google Scholar 

  48. S.L. Robinson and O.D. Sherby: Acta Metall., 1969, vol. 17, pp. 109–25.

    Article  CAS  Google Scholar 

  49. J.R. Spingarn, D.M. Barnnett, and W.D. Nix: Acta Metall., 1979, vol. 27, pp. 1549–61.

    Article  CAS  Google Scholar 

  50. H.E. Evans and G. Knowles: Acta Metall., 1977, vol. 25, pp. 963–70.

    Article  CAS  Google Scholar 

  51. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, and K. Higashi: Mater. Sci. Eng., 2005, vol. A407, pp. 53–61.

    CAS  Google Scholar 

  52. B. Wilshire and C.J. Palmer: Scripta Mater. 2002, vol. 46, pp. 483–88.

    Article  CAS  Google Scholar 

  53. M. Regev, E. Aghion, and A. Rosen: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 123–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Additional information

Manuscript submitted February 16, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabirian, F., Mahmudi, R. Effects of Zr Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy. Metall Mater Trans A 41, 3488–3498 (2010). https://doi.org/10.1007/s11661-010-0398-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0398-9

Keywords

Navigation