Skip to main content
Log in

A Novel Cast Multiphase Stainless Steel With High Strength and High Toughness

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Multiphase stainless steels offer very attractive combinations between strength, toughness and corrosion resistance due to the coexistence of different microstructural components and their interactions. In this study, a novel cast multiphase stainless steel containing martensite, ferrite and austenite was fabricated by a combination of alloy optimization and appropriate heat treatment. The effect of aging temperature on microstructure and mechanical properties was systematically studied based on the stability of austenite and the variations of nanoscale precipitations. As the aging temperature increases, the volume fraction of reversed austenite shows a parabolic pattern of first increasing and then decreasing due to the diffusion of Ni, while the lath martensite undergoes gradual decomposition. Appropriate aging treatment can significantly improve the strength and toughness of the steel. This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale Cu/NiAl co-precipitates pinning dislocations in ferrite. However, with increasing aging temperature, the precipitates in ferrite and ferritic/martensitic phase boundaries are mainly Laves phase and R phase (molybdenum-rich intermetallic compound), which are detrimental to the properties of the investigated steel. A detailed analysis of the fracture morphologies has been conducted to reveal the fracture mechanism of the cast high strength multiphase stainless steel. Voids caused by the deformation of NbC particles and cracks propagating along the ferritic/martensitic phase boundaries are the main cause of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.G. Zhao, W. Liu, Y.M. Fan, T.Y. Zhang, B.J. Dong, L.J. Chen, and Y.B. Wang: Mater. Charact., 2021, vol. 175, p. 111066.

    Article  CAS  Google Scholar 

  2. Y.Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, and Y.Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 614–8.

    Article  Google Scholar 

  3. V. Vignal, S. Ringeval, S. Thiébaut, K. Tabalaiev, C. Dessolin, O. Heintz, F. Herbst, and R. Chassagnon: Corros. Sci., 2014, vol. 85, pp. 42–51.

    Article  CAS  Google Scholar 

  4. S.L. Li, Y.L. Wang, and X.T. Wang: Mater. Sci. Eng. A, 2015, vol. 625, pp. 186–93.

    Article  CAS  Google Scholar 

  5. Y. Fan, T.G. Liu, L. Xin, Y.M. Han, Y.H. Lu, and T. Shoji: J. Nucl. Mater., 2021, vol. 544, p. 152693.

    Article  CAS  Google Scholar 

  6. H.W. Hayden and S. Floreen: Metall. Trans., 1970, vol. 1, pp. 1955–59.

    Article  CAS  Google Scholar 

  7. D. Ye, J. Li, W. Jiang, J. Su, and K.Y. Zhao: Mater. Des., 2012, vol. 41, pp. 16–22.

    Article  Google Scholar 

  8. S.H. Zhang, P. Wang, D.Z. Li, and Y.Y. Li: Mater. Des., 2015, vol. 84, pp. 385–94.

    Article  CAS  Google Scholar 

  9. H. J. Niederau, in Stainless Steel Castings, A. S. Melilli, ed., ASTM International: West Conshohocken, PA, pp 382–93

  10. X.D. Tan, D. Ponge, W.J. Lu, Y.B. Xu, H.S. He, J. Yan, D. Wu, and D. Raabe: Acta Mater., 2020, vol. 186, pp. 374–88.

    Article  CAS  Google Scholar 

  11. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4516–21.

    Article  Google Scholar 

  12. M. Soleimani, A. Kalhor, and H. Mirzadeh: Mater. Sci. Eng. A, 2020, vol. 795, p. 140023.

    Article  CAS  Google Scholar 

  13. J.M. Pardal, M.R. da Silva, I.N. Bastos, M.C.S. de Macêdo, and S.S.M. Tavares: Corros. Eng. Sci. Technol., 2016, vol. 51, pp. 337–41.

    Article  CAS  Google Scholar 

  14. Z. Wu, Y. Liu, H. Zhang, and X. Chen: J. Mater. Res. Technol., 2022, vol. 19, pp. 4177–82.

    Article  CAS  Google Scholar 

  15. L. Ren, J.M. Zhu, L. Nan, and K. Yang: Mater. Des., 2011, vol. 32, pp. 3980–5.

    Article  CAS  Google Scholar 

  16. Y. Kang, W.M. Mao, Y.J. Chen, J. Jing, and M. Cheng: Mater. Sci. Eng. A, 2016, vol. 677, pp. 453–64.

    Article  CAS  Google Scholar 

  17. S.S. Xu, X.H. Lu, S.C. Liu, L. Chen, Y. Zhang, X.Z. Li, and Z.W. Zhang: Mater. Charact., 2021, vol. 182, p. 111589.

    Article  CAS  Google Scholar 

  18. Z.L. Qiu and F. Sun: Mater. Lett., 2021, vol. 304, p. 130652.

    Article  CAS  Google Scholar 

  19. X.Y. Gao, H.Y. Wang, C.N. Ma, M. Lv, G. Sha, Y.M. Li, and H.P. Ren: Mater. Sci. Eng. A, 2021, vol. 819, p. 141522.

    Article  CAS  Google Scholar 

  20. S.D. Erlach, H. Leitner, M. Bischof, H. Clemens, F. Danoix, D. Lemarchand, and I. Siller: Mater. Sci. Eng. A, 2006, vol. 429, pp. 96–106.

    Article  Google Scholar 

  21. V. Govindaraj, P. Hodgson, R.P. Singh, and H. Beladi: Mater. Sci. Eng. A, 2021, vol. 828, p. 142097.

    Article  CAS  Google Scholar 

  22. H.L. Zhang, X. Ji, D.P. Ma, M. Tong, T.J. Wang, B. Xu, M.Y. Sun, and D.Z. Li: J. Mater. Res. Technol., 2021, vol. 11, pp. 98–111.

    Article  CAS  Google Scholar 

  23. A.L. Schaeffler: Met. Prog., 1949, vol. 56, p. 680.

    CAS  Google Scholar 

  24. X. Chen and Y.X. Li: Mater. Sci. Eng. A, 2007, vol. 444, pp. 298–305.

    Article  Google Scholar 

  25. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–5.

    Article  CAS  Google Scholar 

  26. T.J. Ávila Reis, H.M. Santos, E.W.R. de Almeida, and L.B. Godefroid: Mater. Sci. Eng. A, 2021, vol. 810, p. 141028.

    Article  Google Scholar 

  27. K. Anderko, L. Schäfer, and E. Materna-Morris: J. Nucl. Mater., 1991, vol. 179–181, pp. 492–5.

    Article  Google Scholar 

  28. V.H.B. Hernandez, S.S. Nayak, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3115–29.

    Article  Google Scholar 

  29. G. Han, C.J. Shang, Z.J. Xie, R.D.K. Misra, and J.L. Wang: Mater. Lett., 2021, vol. 291, p. 129457.

    Article  CAS  Google Scholar 

  30. F. Wei and K. Tsuzaki: Acta Mater., 2005, vol. 53, pp. 2419–29.

    Article  CAS  Google Scholar 

  31. R.N. Caron and G. Krauss: Metall. Trans., 1972, vol. 3, pp. 2381–89.

    Article  CAS  Google Scholar 

  32. A. Nagao, K. Hayashi, K. Oi, and S. Mitao: ISIJ Int., 2012, vol. 52, pp. 213–21.

    Article  CAS  Google Scholar 

  33. E.S. Park, D.K. Yoo, J.H. Sung, C.Y. Kang, J.H. Lee, and J.H. Sung: Met. Mater. Int., 2004, vol. 10, pp. 521–25.

    Article  CAS  Google Scholar 

  34. D.-S. Leem, Y.-D. Lee, J.-H. Jun, and C.-S. Choi: Scr. Mater., 2001, vol. 45, pp. 767–72.

    Article  CAS  Google Scholar 

  35. M. Al Dawood, I.S. El Mahallawi, M.E. Abd El Azim, and M.R. El Koussy: Mater. Sci. Technol., 2013, vol. 20, pp. 363–69.

    Article  Google Scholar 

  36. W. Jiang, D. Ye, J. Li, J. Su, and K.Y. Zhao: Steel Res. Int., 2014, vol. 85, pp. 1150–57.

    Article  CAS  Google Scholar 

  37. D. Ye, S.H. Li, J. Li, W. Jiang, J. Su, and K.Y. Zhao: Mater. Charact., 2015, vol. 109, pp. 100–6.

    Article  CAS  Google Scholar 

  38. P. Wang, N.M. Xiao, S.P. Lu, D.Z. Li, and Y.Y. Li: Mater. Sci. Eng. A, 2013, vol. 586, pp. 292–300.

    Article  CAS  Google Scholar 

  39. Y.Y. Song, X.Y. Li, L.J. Rong, and Y.Y. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4075–79.

    Article  Google Scholar 

  40. B. Deng, Z.Y. Hou, G.D. Wang, and H.L. Yi: Metall. Mater. Trans. A, 2021, vol. 52, pp. 4852–64.

    Article  CAS  Google Scholar 

  41. Z.J. Xie, Y.Q. Ren, W.H. Zhou, J.R. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 603, pp. 69–75.

    Article  CAS  Google Scholar 

  42. U.K. Viswanathan, G.K. Dey, and V. Sethumadhavan: Mater. Sci. Eng. A, 2005, vol. 398, pp. 367–72.

    Article  Google Scholar 

  43. T. Koutsoukis, A. Redjaïmia, and G. Fourlaris: Mater. Sci. Eng. A, 2013, vol. 561, pp. 477–85.

    Article  CAS  Google Scholar 

  44. F. Abe, H. Araki, and T. Noda: Metall. Trans. A, 1991, vol. 22, pp. 2225–35.

    Article  Google Scholar 

  45. S.C. Kennett, G. Krauss, and K.O. Findley: Scr. Mater., 2015, vol. 107, pp. 123–6.

    Article  CAS  Google Scholar 

  46. B. Qin, Z.Y. Wang, and Q.S. Sun: Mater. Charact., 2008, vol. 59, pp. 1096–100.

    Article  CAS  Google Scholar 

  47. G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson: Mater. Sci. Eng. A, 2009, vol. 516, pp. 7–16.

    Article  Google Scholar 

  48. V. Uthaisangsuk, U. Prahl, and W. Bleck: Int. J. Fract., 2009, vol. 157, pp. 55–69.

    Article  CAS  Google Scholar 

  49. A. Salemi, A. Abdollah-Zadeh, M. Mirzaei, and H. Assadi: Mater. Sci. Eng. A, 2008, vol. 492, pp. 45–8.

    Article  Google Scholar 

  50. L. Tian, C. Borchers, M. Kubota, P. Sofronis, R. Kirchheim, and C.A. Volkert: Acta Mater., 2022, vol. 223, p. 117474.

    Article  CAS  Google Scholar 

  51. C. Tekoglu, J.B. Leblond, and T. Pardoen: J. Mech. Phys. Solids., 2012, vol. 60, pp. 1363–81.

  52. N. Saeidi, F. Ashrafizadeh, B. Niroumand, M.R. Forouzan, S. Mohseni Mofidi, and F. Barlat: Mater. Sci. Eng. A, 2015, vol. 644, pp. 210–7.

    Article  CAS  Google Scholar 

  53. H. Ghadbeigi, C. Pinna, and S. Celotto: Mater. Sci. Eng. A, 2013, vol. 588, pp. 420–31.

    Article  CAS  Google Scholar 

  54. M. Azuma, S. Goutianos, N. Hansen, G. Winther, and X. Huang: Mater. Sci. Technol., 2013, vol. 28, pp. 1092–100.

    Article  Google Scholar 

  55. C.S. Lei, X.L. Li, X.T. Deng, Z.D. Wang, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 709, pp. 72–81.

    Article  CAS  Google Scholar 

  56. B. Xiao, L.Y. Xu, L. Zhao, H.Y. Jing, and Y.D. Han: Mater. Sci. Eng. A, 2017, vol. 690, pp. 104–19.

    Article  CAS  Google Scholar 

  57. S.S. Xu, J.P. Li, Y. Cui, Y. Zhang, L.X. Sun, J. Li, J.H. Luan, Z.B. Jiao, X.L. Wang, C.T. Liu, and Z.W. Zhang: Int. J. Plast., 2020, vol. 128, p. 102677.

    Article  CAS  Google Scholar 

  58. D.Y. Huang, J.C. Yan, and X.W. Zuo: Mater. Charact., 2019, vol. 155, p. 109786.

    Article  CAS  Google Scholar 

  59. N.S. Qiu, Z. Shen, X.W. Zuo, and G. Zhou: Mater. Charact., 2021, vol. 182, p. 111568.

    Article  CAS  Google Scholar 

  60. Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, and C.T. Liu: Acta Mater., 2015, vol. 84, pp. 283–91.

    Article  CAS  Google Scholar 

  61. Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, and C.T. Liu: Sci. Rep., 2016, vol. 6, p. 21364.

    Article  CAS  Google Scholar 

  62. Z.B. Jiao, J.H. Luan, M.K. Miller, and C.T. Liu: Acta Mater., 2015, vol. 97, pp. 58–67.

    Article  CAS  Google Scholar 

  63. X.Y. Gao, H.Y. Wang, C.N. Ma, M. Lv, and H.P. Ren: Intermetallics, 2021, vol. 131, p. 107096.

    Article  CAS  Google Scholar 

  64. L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, and H.K.D.H. Bhadeshia: Acta Mater., 2018, vol. 149, pp. 285–301.

    Article  CAS  Google Scholar 

  65. N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, and D.C. Dunand: Acta Mater., 2014, vol. 71, pp. 89–99.

    Article  CAS  Google Scholar 

  66. Z. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, and B.A. Chin: Sci. Rep., 2013, vol. 3, p. 1327.

    Article  Google Scholar 

  67. Y. Kato, M. Ito, Y. Kato, and O. Furukimi: Mater. Trans., 2010, vol. 51, pp. 1531–35.

    Article  CAS  Google Scholar 

  68. N. Saini, R.S. Mulik, and M.M. Mahapatra: Mater. Sci. Eng. A, 2018, vol. 716, pp. 179–88.

    Article  CAS  Google Scholar 

  69. F. Abe: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 770–3.

    Article  Google Scholar 

  70. J. Cui, I.-S. Park, C.-Y. Kang, and K. Miyahara: ISIJ Int., 2001, vol. 41, pp. 192–5.

    Article  CAS  Google Scholar 

  71. A. Redjaïmia, J.P. Morniroli, P. Donnadieu, and G. Metauer: J. Mater. Sci., 2002, vol. 37, pp. 4079–91.

    Article  Google Scholar 

  72. D.J. Dyson and S.R. Keown: Acta Metall., 1969, vol. 17, pp. 1095–107.

    Article  CAS  Google Scholar 

  73. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Inner Mongolia Autonomous Region Science and Technology Major Special Project (Grant No.: 2021SZD0082).

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, M., He, J. et al. A Novel Cast Multiphase Stainless Steel With High Strength and High Toughness. Metall Mater Trans A 54, 2617–2630 (2023). https://doi.org/10.1007/s11661-023-07039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07039-3

Navigation