Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Ti50Ni(50-X)FeX Alloys Fabricated by Powder Metallurgy Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper investigates the microstructure and mechanical properties of Ti50Ni(50−X)FeX alloys fabricated by powder metallurgy technique. Here, sintering temperatures varied from 1100 °C to 1200 °C for the compacted milled powder mixture. Microstructure, chemical composition, phase formation, porosity, density, hardness, wear, shape memory effect, and compressive strength of the sintered sample were carried out using SEM, EDS, XRD, and mechanical tests, respectively. The SEM and XRD analysis results show that the microstructure of alloys consists of (Ni, Fe)-rich, Ti-rich phases with less retained pore. The densification and hardness increase with increasing the sintering temperature. The 4 at. pct Fe sample sintered at 1200 °C shows higher densification, a lower friction coefficient, and a higher hardness value. The 4 at. pct Fe sample sintered at 1150 °C shows higher compressive, and yield strengths of 132.57 and 116.86 MPa, respectively, and the 6 at. pct Fe sample sintered at 1200 °C shows a higher shape memory effect of 3.37 pct, which are higher in comparison to other compositions and other sintering temperature samples. Abrasive wear of the sample has been carried out, and it found that there is a decrease in friction coefficient value with an increase in sintering temperature from 1150 °C to 1200 °C of the sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.P. Cheng, Z.L. Xie, and Y. Liu: J. Alloys Compd., 2006, vol. 415, pp. 182–87. https://doi.org/10.1016/j.jallcom.2005.08.014.

    Article  CAS  Google Scholar 

  2. G.S. Firstov, J. Van Humbeeck, and Y.N. Koval: J. Intell. Mater. Syst. Struct., 2006, vol. 17, pp. 1041–047. https://doi.org/10.1177/1045389X06063922.

    Article  CAS  Google Scholar 

  3. J. Parida and S.C. Mishra: NiTi-Based Ternary Alloys, Elsevier, New York, 2022, pp. 191–213.

    Google Scholar 

  4. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001.

    Article  CAS  Google Scholar 

  5. T. H. M. Matsumoto: 1st JIM Int. In Symp. on Martensite, Kobe, Japan, 1976, vol. 199.

  6. M.-S. Choi, T. Fukuda, and T. Kakeshita: Scr. Mater., 2005, vol. 53, pp. 869–73. https://doi.org/10.1016/j.scriptamat.2005.05.040.

    Article  CAS  Google Scholar 

  7. Shape Memory Alloy Research Team (Smart), http://smart.tamu.edu, no. http://smart.tamu.edu, p., 2001.

  8. H. Nakajima and M. Koiwa: ISIJ Int., 1991, vol. 31, pp. 757–66. https://doi.org/10.2355/isijinternational.31.757.

    Article  CAS  Google Scholar 

  9. T. Hara, T. Ohba, E. Okunishi, and K. Otsuka: Mater. Trans. JIM, 1997, vol. 38, pp. 11–7. https://doi.org/10.2320/matertrans1989.38.11.

    Article  CAS  Google Scholar 

  10. I. Yoshida, D. Monma, and T. Ono: J. Alloys Compd., 2008, vol. 448, pp. 349–54. https://doi.org/10.1016/j.jallcom.2007.04.217.

    Article  CAS  Google Scholar 

  11. S. Xue, W. Wang, D. Wu, Q. Zhai, and H. Zheng: Mater. Lett., 2012, vol. 72, pp. 119–21. https://doi.org/10.1016/j.matlet.2011.12.095.

    Article  CAS  Google Scholar 

  12. J.L. Lemanski: AIP Conf. Proc., 2006, vol. 824, pp. 3–10. https://doi.org/10.1063/1.2192327.

    Article  CAS  Google Scholar 

  13. T. Ogawa, K. Yokoyama, K. Asaoka, and J. Sakai: Mater. Sci. Eng. A, 2005, vol. 393, pp. 239–46. https://doi.org/10.1016/j.msea.2004.10.020.

    Article  CAS  Google Scholar 

  14. S. Aksöz: Arab. J. Sci. Eng., 2017, vol. 42, pp. 2573–581. https://doi.org/10.1007/s13369-017-2567-2.

    Article  CAS  Google Scholar 

  15. S. Aksöz and B. Bostan: Springer Proc. Phy., 2014, vol. 154, pp. 129–141. https://doi.org/10.1007/978-3-319-04639-6_18

    Article  CAS  Google Scholar 

  16. L. Krone, E. Schüller, M. Bram, O. Hamed, H.-P. Buchkremer, and D Stöver.: Mater. Sci. Eng. A, 2004, vol. 378, pp. 185–190. https://doi.org/10.1016/j.msea.2003.10.345.

  17. C. Shearwood, Y. Q. Fu, L. Yu, and. K. A Khor: Scr. Mater., 2005, vol. 52, pp. 455–460. https://doi.org/10.1016/j.scriptamat.2004.11.010.

  18. S.L. Zhu, X.J. Yang, F. Hu, S.H. Deng, and Z.D. Cui: Mater. Lett., 2004, vol. 58, pp. 2369–373. https://doi.org/10.1016/j.matlet.2004.02.017.

    Article  CAS  Google Scholar 

  19. B. Liu, Z. Liu, X. Liu, W. Wang, and L. Wang: J. Alloys Compd., 2013, vol. 578, pp. 373–79. https://doi.org/10.1016/j.jallcom.2013.05.164.

    Article  CAS  Google Scholar 

  20. A.A. Atiyah, A.-R.K.A. Ali, and N.M. Dawood: Arab. J. Sci. Eng., 2015, vol. 40, pp. 901–13. https://doi.org/10.1007/s13369-014-1538-0.

    Article  CAS  Google Scholar 

  21. H. Jiang, C. Ke, S. Cao, X. Ma, and X. Zhang: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2029–036. https://doi.org/10.1016/S1003-6326(13)62692-8.

    Article  CAS  Google Scholar 

  22. B.-Y. Li, L.-J. Rong, and Y.-Y. Li: Intermetallics, 2000, vol. 8, pp. 643–46. https://doi.org/10.1016/S0966-9795(99)00140-5.

    Article  CAS  Google Scholar 

  23. S. Aksöz, A.T. Özdemir, and B. Bostan: J. Fac. Eng. Archit. Gazi Univ., 2012, vol. 27, pp. 109–15.

    Google Scholar 

  24. S. Aksöz and B. Bostan: J. Polytech., 2018, https://doi.org/10.2339/politeknik.389617.

    Article  Google Scholar 

  25. B.B.S. Aksöz, Ü. Demir, H. Ada, and H. Gökmeşe: GU J. Sci. Part C, 2017, vol. 5, pp. 99–106.

    Article  Google Scholar 

  26. T. Mousavi, F. Karimzadeh, and M.H. Abbasi: Mater. Sci. Eng. A, 2008, vol. 487, pp. 46–51. https://doi.org/10.1016/j.msea.2007.09.051.

    Article  CAS  Google Scholar 

  27. M. Karolus and J. Panek: J. Alloys Compd., 2016, vol. 658, pp. 709–15. https://doi.org/10.1016/j.jallcom.2015.10.286.

    Article  CAS  Google Scholar 

  28. R. Liu and D.Y. Li: Mater. Sci. Technol., 2000, vol. 16, pp. 328–32. https://doi.org/10.1179/026708300101507730.

    Article  CAS  Google Scholar 

  29. D.Y. Li and X. Ma: J. Mater. Sci. Technol., 2001, vol. 17, pp. 45–6.

    Article  Google Scholar 

  30. R. Neupane and Z. Farhat: Wear, 2013, vol. 301, pp. 682–87. https://doi.org/10.1016/j.wear.2012.11.017.

    Article  CAS  Google Scholar 

  31. X.W. Huang, G.N. Dong, and Z.R. Zhou: J. Mater. Eng, 2004, vol. 6, pp. 41–3.

    Google Scholar 

  32. G. Tang, D. Zhang, J. Zhang, P. Lin, and G. Dong: Appl. Surf. Sci., 2014, vol. 321, pp. 371–77. https://doi.org/10.1016/j.apsusc.2014.09.151.

    Article  CAS  Google Scholar 

  33. L. Yan and Y. Liu: J. Mater. Res., 2015, vol. 30, pp. 186–96. https://doi.org/10.1557/jmr.2014.381.

    Article  CAS  Google Scholar 

  34. H.W. Jin: Acta Metall. Sin., 1988, vol. 1, pp. 76–81.

    Google Scholar 

  35. Y.N. Liang, S.Z. Li, Y.B. Jin, W. Jin, and S. Li: Wear, 1996, vol. 198, pp. 236–41. https://doi.org/10.1016/0043-1648(96)06989-X.

    Article  CAS  Google Scholar 

  36. D.Y. Li: Scr. Mater., 1996, vol. 34, p. 195.

    Article  CAS  Google Scholar 

  37. W. Ni, Y.-T. Cheng, M.J. Lukitsch, A.M. Weiner, L.C. Lev, and D.S. Grummon: Appl. Phys. Lett., 2004, vol. 85, pp. 4028–030. https://doi.org/10.1063/1.1811377.

    Article  CAS  Google Scholar 

  38. E. Rabinowicz and R.I. Tanner: J. Appl. Mech., 1996, vol. 33, pp. 479–79. https://doi.org/10.1115/1.3625110.

    Article  Google Scholar 

  39. J. Singh and A.T. Alpas: Wear, 1995, vol. 181–183, pp. 302–11. https://doi.org/10.1016/0043-1648(95)90037-3.

    Article  Google Scholar 

  40. L. Yan, Y. Liu, and E. Liu: Tribol. Int., 2013, vol. 66, pp. 219–24. https://doi.org/10.1016/j.triboint.2013.05.012.

    Article  CAS  Google Scholar 

  41. J. Parida, S.C. Mishra, and A. Behera: Met. Mater. Int., 2022, https://doi.org/10.1007/s12540-022-01277-7.

    Article  Google Scholar 

  42. M. Farvizi, T. Ebadzadeh, M.R. Vaezi, E.Y. Yoon, Y.-J. Kim, J.Y. Kang, H.S. Kim, and A. Simchi: Wear, 2015, vol. 334–335, pp. 35–43. https://doi.org/10.1016/j.wear.2015.04.011.

    Article  CAS  Google Scholar 

  43. F. Alijani, R. Amini, M. Ghaffari, M. Alizadeh, and A.K. Okyay: Mater. Des., 2014, vol. 55, pp. 373–80. https://doi.org/10.1016/j.matdes.2013.09.009.

    Article  CAS  Google Scholar 

  44. J.L. Xu, X.F. Jin, J.M. Luo, and Z.C. Zhong: Mater. Lett., 2014, vol. 124, pp. 110–12. https://doi.org/10.1016/j.matlet.2014.03.088.

    Article  CAS  Google Scholar 

  45. F. Zhang, L. Zheng, Y. Wang, and H. Zhang: Intermetallics, 2019, vol. 112, p. 106548. https://doi.org/10.1016/j.intermet.2019.106548.

    Article  CAS  Google Scholar 

  46. T.-S. Huang, S.-F. Ou, C.-H. Kuo, and C.-H. Yang: Metals (Basel), 2020, https://doi.org/10.3390/met10040527.

    Article  Google Scholar 

  47. J. De Keyzer: Thermodynamic Modeling of the Fe-Ni-Ti System: A Multiple Sublattice Approach. University of Leuven, 2008.

  48. M. Matsumoto, and T. Honma: 1st JIM Int, In Symp. on Martensite, Kobe, Japan, 1976, pp. 199.

  49. N. Zhang, K.P. Babayan, and J.H. Lindenhovius: Mater. Sci. Eng. A, 1992, vol. 150, pp. 263–70.

    Article  Google Scholar 

  50. Archimedes’ Principle, in: n.d, pp. 37–38.

  51. https://www.labdepotinc.com/articles/archimedes-principles.html, 2019.

  52. https://www.andersonmaterials.com/density-and-porosity-measurements-of-solid-materials.html, 2020.

  53. J.Y. Choi and S. Nemat-Nasser: Mater. Sci. Eng. A, 2006, vol. 432, pp. 100–07. https://doi.org/10.1016/j.msea.2006.05.155.

    Article  CAS  Google Scholar 

  54. W. Bolton: Engineering Materials Technology, 2nd eds.Butter worth Heinemann Oxford, 2013.

  55. ASTM Designation E 384-99, ASTM, Philadelphia PA, 1999.

  56. G.E. Dieter: Mechanical metallurgy. Mech Metall., 2011, https://doi.org/10.5962/bhl.title.35895.

    Article  Google Scholar 

  57. I. Manika and J. Maniks: Acta Mater., 2006, vol. 54, pp. 2049–056. https://doi.org/10.1016/j.actamat.2005.12.031.

    Article  CAS  Google Scholar 

  58. Y. G. G.M. Pharr and E.G. Herbert: Annu. Rev. Mater. Res, 2010, p. 271.

  59. N. Zhou, C. Shen, M.F.-X. Wagner, G. Eggeler, M.J. Mills, and Y. Wang: Acta Mater., 2010, vol. 58(20), pp. 6685–694. https://doi.org/10.1016/j.actamat.2010.08.033.

    Article  CAS  Google Scholar 

  60. L. Zhang, Y.Q. Zhang, Y.H. Jiang, and R. Zhou: J. Alloys Compd., 2015, vol. 644, pp. 513–22. https://doi.org/10.1016/j.jallcom.2015.05.063.

    Article  CAS  Google Scholar 

  61. S.L. Zhu, X.J. Yang, D.H. Fu, L.Y. Zhang, C. Li, and Z.D. Cui: Mater. Sci. Eng. A, 2005, vol. 408, pp. 264–68. https://doi.org/10.1016/j.msea.2005.08.012.

    Article  CAS  Google Scholar 

  62. S. Waqar, A. Wadood, A. Mateen, and M.A.U. Rehman: Int. J. Adv. Manuf. Technol., 2020, vol. 108, pp. 625–34. https://doi.org/10.1007/s00170-020-05380-0.

    Article  Google Scholar 

  63. R. Shashanka, D. Chaira, and D. Chakravarty: J. Mater. Sci. Eng. B, 2016. https://doi.org/10.17265/2161-6221/2016.5-6.001.

  64. E. Rabinowicz, Friction and Wear of Materials, John Wiley & Sons. Inc., New York, 1995, pp. 65–123.

    Google Scholar 

  65. Y. Wen, Y.-F. Wang, H. Ran, W. Wei, J.-M. Zhang, and C.-X. Huang: Acta Metall. Sin., 2022, vol. 35(2), pp. 317–25.

    Article  CAS  Google Scholar 

  66. M. Whitney, S.F. Corbin, and R.B. Gorbet: Acta Mater., 2008, pp.559–570.

Download references

Acknowledgments

This is a part of academic research work and is under the support of the Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors are agreed to the publication of the above manuscript. The contribution of all the authors is given below: JP: writing-original draft preparation, data accumulation, analysis, SCM: supervision, execution, and AB: conceptualist, analysis, supervision, review, modification.

Corresponding author

Correspondence to Ajit Behera.

Ethics declarations

Conflict of interest

This manuscript is original, unpublished, and not submitted to another journal. There is no conflict of interest in this journal. There is no source of funding associated with this paper. All authors agreed to submit this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, J., Mishra, S.C. & Behera, A. Microstructure and Mechanical Properties of Ti50Ni(50-X)FeX Alloys Fabricated by Powder Metallurgy Process. Metall Mater Trans A 54, 2585–2604 (2023). https://doi.org/10.1007/s11661-023-07037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07037-5

Navigation