Skip to main content
Log in

Microstructure and Corrosion Behavior of Re-Added Cemented Carbides in Simulated Seawater

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

WC-10(Co-xRe) cemented carbides were prepared by vacuum sintering. The addition of Rhenium (Re) resulted in the grain refinement and martensite phase transition of cemented carbides. Additionally, increased grains and phase boundaries were observed in the cemented carbides using SEM and electron back-scattered diffraction (EBSD), leading to increased corrosion sites and corrosion current (Icorr). However, the corrosion voltage (Ecorr) of the cemented carbides containing Re increased due to Re’s higher standard electrode potential compared to Cobalt (Co). An excessive amount of Re led to the precipitation of the secondary phase in the cemented carbides, which formed new galvanic batteries between different phases. In the WC-9Co-1Re cemented carbide, a maximum charge transfer resistance of 1183.0 Ω cm2 was achieved. The passivation film, composed of Co(OH)2 and Co3O4, isolated the cemented carbide from the corrosive medium, thereby inhibiting further corrosion. Primary corrosion mechanisms involved the dissolution of the Co binder phase and exfoliation of the WC grains. The optimal corrosion resistance was obtained by adding 1 wt pct of Re to the cemented carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this moment, because the data is also a part of an ongoing study.

References

  1. J. García, V.C. Ciprés, A. Blomqvist, and B. Kaplan: Int. J. Refract. Met. H., 2019, vol. 80, pp. 40–68.

    Article  Google Scholar 

  2. Z.H. Ma, S.L. Nie, F.L. Yin, and H. Ji: Ceram Int., 2022, vol. 48, pp. 463–71.

    Article  CAS  Google Scholar 

  3. X. Zhai, H. Ji, S.L. Nie, F.L. Long, and Z.H. Ma: Int. J. Refract. Met. H., 2022, vol. 102, p. 105727.

    Article  CAS  Google Scholar 

  4. Z.X. Liu, Y.X. Li, X.H. Xie, J. Qin, and Y. Wang: Ceram Int., 2021, vol. 47, pp. 25655–63.

    Article  CAS  Google Scholar 

  5. Z.X. Guo, J. Xiong, W.C. Wan, G.B. Dong, and M. Yang: Int. J. Appl. Ceram. Technol., 2014, vol. 11, pp. 1045–53.

    Article  CAS  Google Scholar 

  6. J. Jayaraj and O. Mikael: Int. J. Refract. Met. H., 2021, vol. 100, p. 105621.

    Article  CAS  Google Scholar 

  7. R. Steinlechner, R. de Oro Calderon, T. Koch, P. Linhardt, and W.D. Schubert: Int. J. Refract. Met. H., 2022, vol. 103, p. 105750.

    Article  CAS  Google Scholar 

  8. R. F. Santos, A. M. Ferro Rocha, A.C Bastos, J. P. Cardoso, F. Rodrigues, C. M. Fernandes, J. Sacramento, M. G. S. Ferreira, A. M. R.Senos, C. Fonseca, M. F. Vieira and L. F. Malheiros: Int. J. Refract. Met. H., 2021, vol. 95, p. 105434.

  9. A.R. Boukantar, B. Djerdjare, F. Guiberteau, and A.L. Ortiza: Int. J. Refract. Met. H., 2020, vol. 92, p. 105280.

    Article  CAS  Google Scholar 

  10. S.D. Guo, R. Bao, S.Y. Li, Y.W. Ye, E.T. Zhu, W.J. Wang, Y.X. Zhang, H. Chen, and Y. Ye: J. Alloys Compd., 2020, vol. 827, p. 154269.

    Article  CAS  Google Scholar 

  11. R.F. Santos, A.M.F. Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, C.M. Fernandes, J. Sacramento, M.G.C. Ferreira, A.M.R. Senos, C. Fonseca, M.F. Vieira, and L.F. Malheiros: Int. J. Refract. Met. H., 2020, vol. 86, p. 105090.

    Article  CAS  Google Scholar 

  12. H. Jin, R.J. Ji, T.C. Dong, S. Liu, F. Zhang, L.L. Zhao, C. Ma, B.P. Cai, and Y.H. Liu: J. Mater. Res. Technol., 2022, vol. 16, pp. 152–67.

    Article  CAS  Google Scholar 

  13. S.H. Chang and P.Y. Chang: Mater. Sci. Eng. A., 2014, vol. 618, pp. 56–62.

    Article  CAS  Google Scholar 

  14. H. Scholl, B. Hofman, and A. Rauscher: Electrochim. Acta, 1992, vol. 37, pp. 447–52.

    Article  CAS  Google Scholar 

  15. A.R. Boukantar, B. Djerdjare, F. Guiberteau, and A.L. Ortiz: Int. J. Refract. Met. H., 2021, vol. 95, p. 105452.

    Article  CAS  Google Scholar 

  16. W. Su, Y.X. Sun, J. Liu, J. Feng, and J.M. Ruan: Ceram Int., 2015, vol. 41, pp. 3169–77.

    Article  CAS  Google Scholar 

  17. W.J. Tomlinson and N.J. Ayerst: J. Mater Sci., 1989, vol. 24, pp. 2348–52.

    Article  CAS  Google Scholar 

  18. R. de Oro Calderon, C. Edtmaier and W. Schubert: Int. J. Refract. Met. H., 2019, vol. 85, p. 105063.

  19. J. H. Potgieter, N. Thanjekwayo, P. Olubambi, et al. N. Maledi and S. S. V. Potgieter: Int. J. Refract. Met. H., 2011,vol. 29, pp. 478–87.

  20. H. Zhang, J. Xiong, Z.X. Guo, T.E. Yang, J.B. Liu, and T. Hua: Ceram Int., 2021, vol. 47, pp. 26050–62.

    Article  CAS  Google Scholar 

  21. I. Konyashin and A. Schwedt: Mater. Lett., 2019, vol. 249, pp. 57–61.

    Article  CAS  Google Scholar 

  22. B. Li, R.G. He, H.L. Yang, D. Zou, Y.J. Liu, Y. Liang, Q.M. Yang, and Y.X. Li: Int. J. Refract. Met. H., 2020, vol. 93, p. 105344.

    Article  CAS  Google Scholar 

  23. B. Huang, Y.K. Gong, X. Xiang, W.K. Zhang, D.Q. Dong, K.H. Shi, J.B. Gu, H.W. Xiong, and L. Zhang: Vac., 2022, vol. 195, p. 110701.

    Article  CAS  Google Scholar 

  24. K.F. Jing, Z.X. Guo, T. Hua, J. Xiong, J. Liao, L. Liang, S.D. Yang, J.S. Yi, and H. Zhang: Mater. Sci. Eng. A, 2022, vol. 838, p. 142803.

    Article  CAS  Google Scholar 

  25. A.F. Lisovskii: Powder Metall. Met. Ceram., 2000, vol. 39, pp. 428–33.

    Article  CAS  Google Scholar 

  26. X. Zhang, J.H. Zhou, C. Liu, K. Li, W.J. Shen, Z. Lin, Z.F. Li, Y.H. He, and N. Lin: Int. J. Refract. Met. H., 2019, vol. 80, pp. 123–29.

    Article  CAS  Google Scholar 

  27. X. Q. Fu, Y. C. Ji, X. Q. Cheng, C. F. Dong, Y. Fan and X. G. Li,: Mater. Today Commun., 2020, vol. 25, p. 101429.

  28. P.J. Wang, L.W. Ma, X.Y. Cheng, and X.G. Li: J. Alloys Compd., 2021, vol. 857, p. 158258.

    Article  CAS  Google Scholar 

  29. S. Sutthiruangwong and G. Mori: Int. J. Refract. Met. H., 2003, vol. 21, pp. 135–45.

    Article  CAS  Google Scholar 

  30. B.S. Liu, Y.T. Yan, J.H. Lin, J. Cao, and J.L. Qi: Vac., 2022, vol. 197, p. 110850.

    Article  CAS  Google Scholar 

  31. Y.W. Ye, Y.J. Zou, Z.L. Jiang, Q.M. Yang, L.M. Chen, S.D. Guo, and H. Chen: J. Alloys Compd., 2020, vol. 815, p. 152338.

    Article  CAS  Google Scholar 

  32. G. Greczynski and L. Hultman: Appl. Surf. Sci., 2018, vol. 451, pp. 99–103.

    Article  CAS  Google Scholar 

  33. G. Greczynski and L. Hultman: Sci. Rep., 2021, vol. 11, p. 11195.

    Article  CAS  Google Scholar 

  34. B.W. Fan, S.G. Zhu, W.W. Dong, H. Ding, Y.F. Bai, Y.L. Luo, and P. Di: Ceram. Int., 2021, vol. 47, pp. 7106–16.

    Article  CAS  Google Scholar 

  35. B.J. Tan, K.J. Klabunde, and P.M. Sherwood: J. Am. Chem. Soc., 1991, vol. 113, pp. 855–61.

    Article  CAS  Google Scholar 

  36. J.P. Bonnelle, J. Grimblot, and A. D’Huysser: J. Electron Spectrosc., 1975, vol. 7, pp. 151–62.

    Article  CAS  Google Scholar 

  37. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir: Mater. Sci. Eng. A., 2005, vol. 394, pp. 139–48.

    Article  Google Scholar 

  38. D. Mueller, A. Shih, E. Roman, T. Madey, R. Kurtz, and R. Stockbauer: J. Vac. Sci. Technol. A., 1988, vol. 6, pp. 1067–71.

    Article  CAS  Google Scholar 

  39. K.L. Håkansson, H. Johansson, and L.I. Johansson: Phys. Rev. B, 1994, vol. 49, p. 2035.

    Article  Google Scholar 

  40. S.M. Youssry, I.S. El-Hallag, R. Kumar, G. Kawamura, A. Matsuda, and M.N. El-Nahass: J. Electroanal. Chem., 2020, vol. 857, p. 113728.

    Article  CAS  Google Scholar 

  41. S.D. Guo, W. Yan, J.H. Yi, S.L. Wang, X. Huang, S.R. Yang, M.L. Zhang, and Y.W. Ye: Ceram Int., 2020, vol. 46, pp. 17243–51.

    Article  CAS  Google Scholar 

  42. P.D. Schulze, S.L. Shaffer, R.L. Hance, and D.L. Utley: J. Vac. Sci. Technol. A., 1983, vol. 1, pp. 97–99.

    Article  CAS  Google Scholar 

  43. B. Folkesson, M. Bjorøy, J. Pappas, S. Skaarup, and R. Aaltonen: Acta Chem. Scand, 1973, vol. 27, p. 19.

    Google Scholar 

  44. A. Fazili, M.R. Derakhshandeh, S. Nejadshamsi, L. Nikzad, M. Razavi, and E. Ghasali: J. Alloys Compd., 2020, vol. 823, 153857.

    Article  CAS  Google Scholar 

  45. W.A. Badawy, F.M. Al-Kharafi, and J.R. Al-Ajmi: J. Appl. Electrochem., 2000, vol. 30, pp. 693–704.

    Article  CAS  Google Scholar 

  46. F.J.J. Kellner, H. Hildebrand, and S. Virtanen: Int. J. Refract. Met. H., 2009, vol. 27, pp. 806–12.

    Article  CAS  Google Scholar 

  47. A.M. Human, B. Roebuck, and H.E. Exner: Mater. Sci. Eng. A., 1998, vol. 241, pp. 202–10.

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by Sichuan Science and Technology Program (2023ZHCG0030 and 2022YFSY0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixing Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, K., Guo, Z., Xiong, J. et al. Microstructure and Corrosion Behavior of Re-Added Cemented Carbides in Simulated Seawater. Metall Mater Trans A 54, 2410–2420 (2023). https://doi.org/10.1007/s11661-023-07028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07028-6

Navigation