Skip to main content
Log in

Deposition Current Density Induced Alterations in Texture and Grain Boundary Constitution of Electrodeposited Zinc Coatings for Enhanced Corrosion Resistance Performance

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Zinc coatings were electrodeposited at different current densities, i.e., 30, 40, 50, 60, and 70 mA/cm2. All the coatings exhibited compact and crack-free morphology. The coating electrodeposited at 50 and 30 mA/cm2 current density showed the highest and lowest corrosion resistance, respectively. Corrosion current density (icorr) and polarization resistance (Rp) values for the 50 mA/cm2 deposited coating were 0.995 µA/cm2 and 5268.62 Ω cm2, respectively. icorr and Rp values for 30 mA/cm2 electrodeposited coating were 64.63 µA/cm2 and 627.51 Ω cm2, respectively. Electron backscatter diffraction analysis showed a direct correlation between the coating micro-texture and its corrosion behavior. The high corrosion resistance of coating electrodeposited at 50 mA/cm2 current density was due to the presence of dominant basal plane surface texture and a higher fraction of low-energy grain boundaries. The high corrosion rate of coating deposited at 30 mA/cm2 current density was due to the presence of high energy texture and large angle boundaries, which promoted corrosive media penetration through grains and grain boundaries, resulting in a higher dissolution rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References:

  1. F. Ebrahimi and Z. Ahmed: J. Appl. Electrochem., 2003, vol. 33, pp. 733–39.

    Article  CAS  Google Scholar 

  2. J.C. Puippe and N. Ibl: J. Appl. Electrochem., 1980, vol. 10, pp. 775–84.

    Article  CAS  Google Scholar 

  3. N.P. Wasekar, P. Haridoss, S.K. Seshadri, and G. Sundararajan: Surf. Coatings Technol., 2016, vol. 291, pp. 130–40.

    Article  CAS  Google Scholar 

  4. A.M. Rashidi and A. Amadeh: Surf. Coatings Technol., 2008, vol. 202, pp. 3772–776.

    Article  CAS  Google Scholar 

  5. H. Natter and R. Hempelmann: Electrochim. Acta, 2003, vol. 49, pp. 51–61.

    Article  CAS  Google Scholar 

  6. K. Saber, C.C. Koch, and P.S. Fedkiw: Mater. Sci. Eng. A, 2003, vol. 341, pp. 174–81.

    Article  Google Scholar 

  7. Y. Li, H. Jiang, W. Huang, and H. Tian: Appl. Surf. Sci., 2008, vol. 254, pp. 6865–869.

    Article  CAS  Google Scholar 

  8. S. Li, J. Fu, G. Miao, S. Wang, W. Zhao, Z. Wu, Y. Zhang, and X. Yang: Adv. Mater., 2021, vol. 33, pp. 1–9.

    CAS  Google Scholar 

  9. T. Yamamoto, K. Igawa, H. Tang, C.Y. Chen, T.F.M. Chang, T. Nagoshi, O. Kudo, R. Maeda, and M. Sone: Microelectron. Eng., 2019, vol. 213, pp. 18–23.

    Article  CAS  Google Scholar 

  10. J.M. Costa, M.S. Hori, and A.F. de Almeida-Neto: Chem. Phys., 2019, vol. 527, p. 110502.

    Article  CAS  Google Scholar 

  11. J. Yu, L. Wang, L. Su, X. Ai, and H. Yang: J. Electrochem. Soc., 2003, vol. 150, p. C19.

    Article  CAS  Google Scholar 

  12. S. Glasstone: Trans. Faraday Soc., 1935, vol. 31, pp. 1232–237.

    Article  CAS  Google Scholar 

  13. A. Gupta and C. Srivastava: Scr. Mater., 2021, vol. 196, p. 113763.

    Article  CAS  Google Scholar 

  14. A. Gupta and C. Srivastava: Surf. Coat. Technol., 2021, vol. 425, p. 127709.

    Article  CAS  Google Scholar 

  15. L. Jinlong, L. Tongxiang, and W. Chen: J. Solid State Chem., 2016, vol. 240, pp. 109–14.

    Article  Google Scholar 

  16. X. Qiao, H. Li, W. Zhao, and D. Li: Electrochim. Acta, 2013, vol. 89, pp. 771–77.

    Article  CAS  Google Scholar 

  17. M.I. Hossain, M. Kamruzzaman, and A.B.M. Obaidul-Islam: J. Mater. Sci. Mater. Electron., 2015, vol. 26, pp. 1756–762.

    Article  CAS  Google Scholar 

  18. A. Goux, T. Pauporté, J. Chivot, and D. Lincot: Electrochim. Acta, 2005, vol. 50, pp. 2239–248.

    Article  CAS  Google Scholar 

  19. C. Srivastava, S.K. Ghosh, S. Rajak, A.K. Sahu, R. Tewari, V. Kain, and G.K. Dey: Surf. Coat. Technol., 2017, vol. 313, pp. 8–16.

    Article  CAS  Google Scholar 

  20. S.M.S.I. Dulal and E.A. Charles: J. Alloys Compd., 2008, vol. 455, pp. 274–79.

    Article  CAS  Google Scholar 

  21. S.M.S.I. Dulal, H.J. Yun, C.B. Shin, and C.K. Kim: Electrochim. Acta, 2007, vol. 53, pp. 934–43.

    Article  CAS  Google Scholar 

  22. J. Amblard, I. Epelboin, M. Froment, and G. Maurin: J. Appl. Electrochem., 1979, vol. 9, pp. 233–42.

    Article  CAS  Google Scholar 

  23. A.F. de Almeida, H. da Costa Neto, R.A.C. de Santana, J.J.N. Alves, A.R. Nascimento Campos, and S. Prasad: Can. J. Chem. Eng., 2021, vol. 99, pp. S284-294.

    Google Scholar 

  24. D.P. Weston, S.J. Harris, P.H. Shipway, N.J. Weston, and G.N. Yap: Electrochim. Acta, 2010, vol. 55, pp. 5695–708.

    Article  CAS  Google Scholar 

  25. M.K. Punith Kumar, M.Y. Rekha, and C. Srivastava: Corros. Rev., 2021, vol. 39, pp. 15–26.

    Article  CAS  Google Scholar 

  26. C. Hu, X. Xie, H. Zheng, Y. Qing, and K. Ren: New J. Chem., 2020, vol. 44, pp. 8890–901.

    Article  CAS  Google Scholar 

  27. R. Jain and R. Pitchumani: Surf. Coat. Technol., 2018, vol. 337, pp. 223–31.

    Article  CAS  Google Scholar 

  28. P.A. Sørensen, S. Kiil, K. Dam-Johansen, and C.E. Weinell: J. Coat. Technol. Res., 2009, vol. 6, pp. 135–76.

    Article  Google Scholar 

  29. M.H. Gharahcheshmeh and M.H. Sohi: Mater. Chem. Phys., 2009, vol. 117, pp. 414–21.

    Article  CAS  Google Scholar 

  30. S. Yogesha, K. Udaya Bhat, and A. Chitharanjan Hegde: Synth. React. Inorg. Met. Nano-Met. Chem., 2011, vol. 41, pp. 405–11.

    Article  CAS  Google Scholar 

  31. Z. Feng, Q. Li, J. Zhang, P. Yang, H. Song, and M. An: Surf. Coat. Technol., 2015, vol. 270, pp. 47–56.

    Article  CAS  Google Scholar 

  32. H. Park and J.A. Szpunar: Corros. Sci., 1998, vol. 40, pp. 525–45.

    Article  CAS  Google Scholar 

  33. H. Kancharla, G.K. Mandal, H.S. Maharana, S.S. Singh, and K. Mondal: J. Mater. Eng. Perform., 2022

  34. M. Stern and A.L. Geary: J. Electrochem. Soc., 1957, vol. 104, p. 56.

    Article  CAS  Google Scholar 

  35. M. Isakhani-Zakaria, S.R. Allahkaram, and H.A. Ramezani-Varzaneh: Corros. Sci., 2019, vol. 157, pp. 472–80.

    Article  CAS  Google Scholar 

  36. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–484.

    Article  CAS  Google Scholar 

  37. J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 1–22.

    Google Scholar 

  38. J. Wang and I.J. Beyerlein: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3556–569.

    Article  Google Scholar 

  39. K. Sai Jyotheender, M.K. Punith Kumar, and C. Srivastava: Surf. Coat. Technol., 2021, vol. 423, p. 127594.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding received from CSIR Government of India. Electron microscopy facilities in AFMM IISc is also acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 26, 2022; accepted February 22, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyotheender, K.S., Srivastava, C. Deposition Current Density Induced Alterations in Texture and Grain Boundary Constitution of Electrodeposited Zinc Coatings for Enhanced Corrosion Resistance Performance. Metall Mater Trans A 54, 2384–2393 (2023). https://doi.org/10.1007/s11661-023-07025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07025-9

Navigation