Skip to main content
Log in

Minor Elements and Solidification Cracking During Laser Powder-Bed Fusion of a High \(\gamma ^{\prime }\) CoNi-Base Superalloy

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

The cracking behavior of a high \(\gamma ^{\prime }\) volume fraction CoNi-base superalloy fabricated via laser powder bed fusion (LPBF) is studied in relation to the content of carbon and boron. Severe cracking occurred with the increase in boron content from 0.08 to 0.16 at. pct (0.015 to 0.029 wt pct), while compositions with 0.1 to 0.36 at. pct C (0.02 to 0.076 wt pct) and 0.08 at. pct B exhibited minimal cracking. Assessment of cracks in the high-boron composition shows a variation in crack density with printing parameters, and alignment of the cracks with the build direction. Scanning electron microscopy (SEM) of the crack surfaces shows evidence of a solidification cracking mode. Differential thermal analysis (DTA) reveals a decreased incipient melting temperature for the high-boron composition, and atom probe tomography (APT) is used to measure the enrichment at grain boundaries, revealing distinct boron segregation. Scheil-Gulliver solidification simulations for the different C and B levels are consistent with the incipient melting behavior observed with DTA. Evaluation of the solidification cracking susceptibility from the simulations allow for comparison of the CoNi alloy behavior to Ni-base superalloys studied for LPBF fabrication and displays how such metrics may aid in the design of new precipitation-strengthened superalloys for additive manufacturing (AM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Notes

  1. CM 247 LC, and CMSX-4 are registered trademarks of Cannon-Muskegon Corporation

  2. Inconel is a registered trademark of Huntington Alloys Corporation

  3. Udimet is a registered trademark of Special Metals Corporation

  4. GammaPrint is a trademark of CRS Holdings, inc., a subsidiary of Carpenter Technology Corporation

  5. EOS is a registered trademark of EOS gmbH Electro Optical Systems

  6. Setaram is a registered trademark of Kep Technologies Societe Anonyme

  7. Vibromet is a registered trademark of Illinois Tool Works Inc.

  8. Thermo Fisher Scientific™  is a registered trademark of Thermo Fisher Scientific Inc. Corporation

  9. FEI™  & Versa™  are trademarks of Thermo Fisher Scientific Inc. Corporation

  10. OIM Analysis™  is a trademark of AMETEK Inc.

  11. LEAP™  is a registered trademark of Cameca Instruments Inc.

  12. IVAS™  is a trademark of Cameca Instruments Inc.

  13. AD730 is a registered trademark of Aubert & Duval S.A.

  14. Hastelloy is a registered trademark of Haynes International Inc.

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y. Gong, J.W. Clark, A.A. Németh, D.G. McCartney, and R.C. Reedl: Acta Mater., 2021, vol. 202, pp. 417–36

    Article  CAS  Google Scholar 

  3. S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, and A.T. Clare: Int. J. Mach. Tools Manuf., 2021, vol. 165, p. 103729.

    Article  Google Scholar 

  4. L.N. Carter, M.M. Attallah and R.C. Reed: Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking, 2012, pp. 577–86.

  5. I. Lopez-Galilea, B. Ruttert, J. He, T. Hammerschmidt, R. Drautz, B. Gault, and W. Theisen: Addit. Manuf., 2019, vol. 30, p. 100874.

    Article  CAS  Google Scholar 

  6. D. Grange, J.D. Bartout, B. Macquaire, and C. Colin: Materialia, vol. 12, p. 100686.

    Article  CAS  Google Scholar 

  7. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, and G. Martin: Acta Mater., 2018, vol. 142, pp. 82–94.

    Article  CAS  Google Scholar 

  8. L.N. Carter, C. Martin, P.J. Withers, and M.M. Attallah: J. Alloys Compds., 2014, vol. 615, pp. 338–47.

    Article  CAS  Google Scholar 

  9. V. Divya, R. Muñoz-Moreno, O. Messé, J. Barnard, S. Baker, T. Illston, and H. Stone: Characterization, 2016, vol. 114, pp. 62–74.

    Article  CAS  Google Scholar 

  10. S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I. Ashcroft, and A. Clare: Addit. Manuf., 2017, vol. 15, pp. 113–22.

    Article  CAS  Google Scholar 

  11. S. Griffiths, H. Ghasemi Tabasi, T. Ivas, X. Maeder, A. De Luca, K. Zweiacker, R. Wróbel, J. Jhabvala, R. Logé, and C. Leinenbach, Addit. Manuf., 2021, vol. 36, p. 101443.

    Article  CAS  Google Scholar 

  12. A. De Luca, C. Kenel, S. Griffiths, S.S. Joglekar, C. Leinenbach, and D.C. Dunand, Mater. Des., 2021, vol. 201, p. 109531.

    Article  Google Scholar 

  13. G. Marchese, S. Parizia, A. Saboori, D. Manfredi, M. Lombardi, P. Fino, D. Ugues, and S. Biamino, Metals, 2020, vol. 10, p. 882.

  14. J.N. Ghoussoub, Y.T. Tang, W.J.B. Dick-Cleland, A.A.N. Nemeth, Y. Gong, D.G. McCartney, A.C.F. Cocks, and R.C. Reed, Metall. Mater. Trans. A, 2022, vol. 53A, 962–83.

    Article  CAS  Google Scholar 

  15. C. Qiu, H. Chen, Q. Liu, S. Yue, and H. Wang, Mater. Charact., 2019, vol. 148, pp. 330–44.

    Article  CAS  Google Scholar 

  16. W. Zhou, Y. Tian, Q. Tan, S. Qiao, H. Luo, G. Zhu, D. Shu, and B. Sun, Addit. Manuf., 2022, vol. 58, p. 103016.

    Article  CAS  Google Scholar 

  17. W. Zhou, G. Zhu, R. Wang, C. Yang, Y. Tian, L. Zhang, A. Dong, D. Wang, D. Shu, and B. Sun, Mater. Sci. Eng. A, 2020, vol. 791, p. 139745.

    Article  CAS  Google Scholar 

  18. P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.J. Blandin, S. Abed, R. Dendievel, B. Gault, and G. Martin, Acta Mater., 2019, vol. 177, pp. 209–21.

    Article  CAS  Google Scholar 

  19. S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, and R.R. Dehoff, 2018, Metall. Mater. Trans. A, 49A, pp. 3764–80.

  20. B. Yoo, C. Jung, K. Ryou, W.S. Choi, L. Haußmann, S. Yang, T. Boll, S. Neumeier, and P.-P. Choi, Addit. Manuf., 2022, vol. 60, p. 103287.

    Article  CAS  Google Scholar 

  21. T. Froeliger, A. Després, L. Toualbi, D. Locq, M. Veron, G. Martin, R. Dendievel, Mater. Charact., 2022, vol. 194, p. 112376.

    Article  CAS  Google Scholar 

  22. H. Ghasemi-Tabasi, C. de Formanoir, S.V. Petegem, J. Jhabvala, S. Hocine, E. Boillat, N. Sohrabi, F. Marone, D. Grolimund, H.V. Swygenhoven, and R.E. Logé, Addit. Manuf., 2022, vol. 51, p. 102619.

    Article  CAS  Google Scholar 

  23. J.H. Boswell, D. Clark, W. Li, and M.M. Attallah, Mater. Des., 2019, vol. 174, p. 107793.

    Article  CAS  Google Scholar 

  24. M. Vilanova, M.C. Taboada, A. Martinez-Amesti, A. Niklas, M.S. Sebastian, and T. Guraya, Materials, vol. 14

  25. A. Després, S. Antonov, C. Mayer, C. Tassin, M. Veron, J. J. Blandin, P. Kontis, and G. Martin: Materialia, 2021, vol. 19, 101193.

  26. J. Grodzki, N. Hartmann, R. Rettig, E. Affeldt, and R.F. Singer: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2914–26.

    Article  CAS  Google Scholar 

  27. J. Zhang and R.F. Singer: Acta Mater., 2002, vol. 50, pp. 1869–79.

    Article  CAS  Google Scholar 

  28. S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G. Seward, N. Zhou, S.A. Forsik, P. Nandwana, M.M. Kirka, R.R. Dehoff, W.E. Slye, and T.M. Pollock: Nat. Commun., 2020, vol. 11, p. 4975.

    Article  CAS  Google Scholar 

  29. C. Stewart, S. Murray, A. Suzuki, T. Pollock, and C. Levi: Mater. Des., 2020, vol. 189, p. 108445.

    Article  CAS  Google Scholar 

  30. S.P. Murray, E.B. Raeker, K.M. Pusch, C. Frey, C.J. Torbet, N. Zhou, S.A. Forsik, A.D. Dicus, G.A. Colombo, M.M. Kirka, and T.M. Pollock: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 2943–60.

    Article  Google Scholar 

  31. W.C. Lenthe, S. Singh, and M. De Graef: Ultramicroscopy, 2019, vol. 207, p. 112841.

    Article  CAS  Google Scholar 

  32. M.A. Groeber, M.A. Jackson, Integr. Mater. Manuf. Innov., 2014, vol. 3, pp. 56–72.

  33. University of Cambridge, Creep mechanisms, URL: https://www.edax.com/products/ebsd/oim-analysis/oim-analysis-v8. Accessed 1 July 2022.

  34. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–39.

    Article  CAS  Google Scholar 

  35. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44

    Article  CAS  Google Scholar 

  36. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona: Nat. Methods, 2012, vol. 9, pp. 676–82

  37. J.C. Yen, F.J. Chang, and S. Chang: IEEE Trans. Image Process., 1995, vol. 4, pp. 370–78 (1995)

    Article  CAS  Google Scholar 

  38. B.W. Krakauer and D.N. Seidman: Phys. Rev. B, 1993, vol. 48, pp. 6724–29.

  39. S. Kou: Weld. J., 2015, vol. 94, pp. 374–88.

    Google Scholar 

  40. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, 273–312.

    Article  CAS  Google Scholar 

  41. T.W. Clyne, M. Wolf, and W. Kurz: Metall. Mater. Trans. B, 1982, vol. 13B, pp. 259–66.

    Article  Google Scholar 

  42. T.G. Gallmeyer, S. Moorthy, B.B. Kappes, M.J. Mills, B. Amin-Ahmadi, and A.P. Stebner, Addit. Manuf., 2020, vol. 31, p. 100977.

    Article  CAS  Google Scholar 

  43. S. Li, Q. Wei, Y. Shi, C.K. Chua, Z. Zhu, and D. Zhang, J. Mater. Sci. Technol., 2015, vol. 31, pp. 946–52.

    Article  CAS  Google Scholar 

  44. D. Tomus, P.A. Rometsch, M. Heilmaier, and X. Wu: Addit. Manuf., 2017, vol. 16, pp. 65–72.

    Article  CAS  Google Scholar 

  45. Y.Q. Liu, X.S. Zhao, J. Yang, and J.Y. Shen: J. Alloys Compds., 2011, vol. 509, pp. 4805–10.

    Article  CAS  Google Scholar 

  46. E. Lugscheider, H. Reimann: Monatshefte Chem., 1977, vol. 108, pp. 1005–10

    CAS  Google Scholar 

  47. X. Zhang, C.J. Yocom, B. Mao, and Y. Liao: J. Laser Appl., 2019, vol. 31, p. 031201.

    Article  Google Scholar 

  48. H. Kyogoku, T.-T. Ikeshoji: Mech. Eng. Rev., 2020, vol. 7, pp. 19-00182–19-00182.

  49. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449–55.

    Article  Google Scholar 

  50. N. Wang, S. Mokadem, M. Rappaz, and W. Kurz: Acta Mater., 2004, vol. 52, pp. 3173–82.

    Article  CAS  Google Scholar 

  51. P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, and R.C. Reed: Acta Mater., 2017, vol. 124, pp. 489–500.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research reported here made use of shared facilities of the National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC) at UC Santa Barbara, DMR-172025. The UC Santa Barbara MRSEC is a member of the Materials Research Facilities Network (www.mrfn.org). A portion of this research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC and performed in partiality at the Oak Ridge National Laboratory’s Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility. APT research was supported by the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. The authors would like to acknowledge James Lamb for developing the python script used to analyze the DTA heating curves.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of interest

UCSB has a pending patent (T.M.P. as one of the inventors) on the CoNi alloys investigated: High Temperature Oxidation Resistant Co-based Gamma/Gamma Prime Alloys DMREF-Co, US patent application number US16/375,687, publication number US20200140978A1, international patent application number PCT/US2019/025882, international publication number WO2019195612A1. All other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan B. Raeker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeker, E.B., Pusch, K.M., Forsik, S.A.J. et al. Minor Elements and Solidification Cracking During Laser Powder-Bed Fusion of a High \(\gamma ^{\prime }\) CoNi-Base Superalloy. Metall Mater Trans A 54, 1744–1757 (2023). https://doi.org/10.1007/s11661-023-06957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06957-6

Navigation