Skip to main content
Log in

Forging and Heat Treatment Conditions that Produce Visible Grains in a γγ′ Nickel-Based Superalloy

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 30 January 2023

This article has been updated

Abstract

Experiments were undertaken to understand forging and heat treatment conditions that give rise to large, visible grains in a new polycrystalline nickel-based γγ′ superalloy after solution heat treatment above the gamma prime (γ′) solvus temperature (Tsolvus). Such grains are undesirable as they reduce strength and low cycle fatigue performance. The information that is reported is required to design an isothermal forging practice to manufacture closed die forgings, intended for disk rotors that are used in aircraft engines. The alloy is a development composition, which contains about 51 pct γ′ and has been produced by powder metallurgy. Compression tests were conducted to specified upsets on right circular cylinder and double-cone test pieces. Segments of double cones were heat treated and examined to characterize grain size. Visible grains were found in areas of low forging strain (< 0.75), particularly in localized areas of higher strain rate, from slow heating rates through the γTsolvus. It is proposed that they are produced by selective grain growth from activation of a limited number of recrystallization nuclei that have sufficient retained strain energy to exceed a critical value, which reduces with increasing heating time. Higher strains are understood to promote the formation of additional nucleation sites for recrystallization and a consistently finer grain size. Localized areas of low strain that receive higher strain rates generate greater strain hardening, which creates a higher number of nuclei for selective grain growth, compared to surrounding regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. P. Argüelles, J. Lumsden, M. Bischoff, D. Ranque, P. Busquin, S. Rasmussen, B.A.C. Droste, P. Reutlinger, R. Evans, R. Robins, W. Kröll, H. Terho, J.-L. Lagardère, A. Wittlöv, and A. Lina: European Aeronautics: A Vision for 2020 (Advisory Council for Aviation Research and Innovation in Europe), https://op.europa.eu/en/publication-detail/-/publication/214b7682-3947-411f-bcb5-92cb03ea7931. Accessed 13 August 2022.

  2. M. Darecki, C. Edelstenne, T. Enders, E. Fernandez, P. Hartman, J.-P. Herteman, M. Kerkloh, I. King, P. Ky, M. Mathieu, G. Orsi, G. Schotman, C. Smith, and J.-D. Worner: Flightpath 2050 Europe’s Vision for Aviation (European Commission), https://op.europa.eu/en/publication-detail/-/publication/7d834950-1f5e-480f-ab70-ab96e4a0a0a. Accessed 13 August 2022.

  3. R.C. Reed, A. Mottura, and D.J. Crudden: in Superalloys 2016, M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin, eds., TMS, Warrendale, PA, 2016, pp. 15–23.

  4. R.J. Mitchell, J.A. Lemsky, R. Ramanathan, H.Y. Li, K.M. Perkins, and L.D. Connor: in Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 347–56.

  5. D. Anderson: Fuel Conservation Operational Procedures for Environmental Performance (International Civil Aviation Organisation), https://www.icao.int/Meetings/EnvironmentalWorkshops/Documents/ICAO-TransportCanada-2006/Anderson_ops.pdf. Accessed 13 August 2022.

  6. M.C. Hardy, C. Argyrakis, H.S. Kitaguchi, A.S. Wilson, R.C. Buckingham, K. Severs, S. Yu, C. Jackson, E.J. Pickering, S.C.H. Llewelyn, C. Papadaki, K.A. Christofidou, P.M. Mignanelli, A. Evans, D.J. Child, H.Y. Li, N.G. Jones, C.M.F. Rae, P. Bowen, and H.J. Stone: in Superalloys 2020, S. Tin, M. Hardy, J. Clews, J. Cormier, Q. Feng, J. Marcin, C. O’Brien, and A. Suzuki, eds., The Minerals, Metals & Materials Series, Warrendale, PA, 2020, pp. 19–30. https://doi.org/10.1007/978-3-030-51834-9_2.

  7. R.L. Dreshfield, and H.R. Gray: P/M Superalloys – A Troubled Adolescent, NASA Technical Memorandum, TM-83623, Lewis Research Center, Cleveland, OH, June 1984.

  8. R. Anderson: Int. J. Powder Metall., 1990, vol. 26(2), pp. 171–78.

    Google Scholar 

  9. J. Smythe: Advanced Materials and Processes, November 2008, pp. 52–5. https://www.asminternational.org/documents/10192/1887146/amp16611p052.pdf/6664af73-fa87-4c2f-8b94-d420d5c438e3/AMP16611P052. Accessed 13 August 2022.

  10. M.C. Hardy, M. Detrois, E.T. McDevitt, C. Argyrakis, V. Saraf, P.D. Jablonski, J.A. Hawk, R.C. Buckingham, H.S. Kitaguchi, and S. Tin: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2626–50.

    Article  Google Scholar 

  11. N. Bozzolo, A. Agnoli, N. Souai, M. Bernacki, and R.E. Loge: 5th Int. Conf. Recryst. Grain Growth. Sydney, 2013. https://doi.org/10.4028/www.scientific.net/MSF.753.321.

  12. A. Agnoli, M. Bernacki, R. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4405–21.

    Article  Google Scholar 

  13. V.M. Miller, A.E. Johnson, C.J. Torbet, and T.M. Pollock: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1566–74.

    Article  Google Scholar 

  14. M.C. Hardy, R.C. Reed, and D. Crudden: United States Patent US 10,422,024 B2, 24 September 2019.

  15. M. Brozovic Gariglio, N. Bozzolo, and D. Pino Muñoz: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4125–36.

    Article  Google Scholar 

  16. G.J. Davies, J.W. Edington, C.P. Cutler, and K.A. Padmanabhan: J. Mater. Sci., 1970, vol. 5(12), pp. 1091–102.

    Article  CAS  Google Scholar 

  17. F. Liu, J. Chen, J. Dong, M. Zhang, and Z. Yao: Mater. Sci. Eng. A, 2016, vol. 651, pp. 102–15.

    Article  CAS  Google Scholar 

  18. M.J. Anderson, F. Schulz, Y. Lu, H.S. Kitaguchi, P. Bowen, C. Argyrakis, and H.C. Basoalto: Acta Mater., 2020, vol. 191, pp. 81–100.

    Article  CAS  Google Scholar 

  19. T.P. Gabb, A. Garg, D.R. Miller, C.K. Sudbrack, D.R. Hull, D. Johnson, R.B. Rogers, J. Gayda, and S.L. Semiatin, Formation of Minor Phases in a Nickel-Based Disk Superalloy, NASA Technical Memorandum TM-2012-217604, Glenn Research Center, Cleveland, OH, 2012.

  20. L. Tan, Y. Li, F. Liu, Y. Nie, and L. Jiang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 2591–99.

    Article  CAS  Google Scholar 

  21. J. Gayda, P. Kantzos, and J. Miller: Quench Crack Behavior of Nickel-Based Disk Superalloys, NASA/TM-2002-211994, NASA Technical Memorandum TM-2002-211984, Glenn Research Center, Cleveland, OH, 2002.

  22. Y.K. Cho, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3077–90.

    Article  CAS  Google Scholar 

  23. M. Detrois, J. Rotella, R.L. Goetz, R.C. Helmink, and S. Tin: Mater. Sci. Eng. A, 2015, vol. 627, pp. 95–105.

    Article  CAS  Google Scholar 

  24. R. Thamburaj, A.K. Koul, W. Wallace, and M.C. de Malherbe: Proc. 1984 Int. Powder Metall. Conf., Int. Powder Metall. Conf., E.N. Aqua, and C.I. Whitman, eds., MPIF/APMI, 1985, pp. 635–75.

  25. G.L.G.S.B. Srinivas Kumar, M. Sateshwar, A. Ranjan Sharma, M. Palit, R. Sarkar, P. Ghosal, and G. Appa Rao: J. Alloys Compd., 2022, vol. 909(7), p. 164772. https://doi.org/10.1016/j.jallcom.2022.164772.

    Article  CAS  Google Scholar 

  26. J.R. May, M.C. Hardy, M.R. Bache, and D.D. Kaylor: in Euro Superalloys 2010, M. Hellmaier, eds., 2011, pp. 265–70.

  27. K.A. Christofidou, M.C. Hardy, H.Y. Li, C. Argyrakis, H. Kitaguchi, N.G. Jones, P.M. Mignanelli, A.S. Wilson, O.M.D.M. Messé, E.J. Pickering, R.J. Gilbert, C.M.F. Rae, S. Yu, A. Evans, D. Child, P. Bowen, and H.J. Stone: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3896–907.

    Article  Google Scholar 

  28. E.J. Payton: Characterization and Modeling of Grain Coarsening in Powder Metallurgy Nickel-Based Superalloys, The Ohio State University, Columbus, 2009.

    Google Scholar 

  29. I.M.D. Parr, T.J. Jackson, M.C. Hardy, D.J. Child, C. Argyrakis, K. Severs, V. Saraf, and J.M. Stumpf: in Superalloys 2016, M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin, eds., TMS, Warrendale, PA, 2016, pp. 447–56.

  30. M.A. Charpagne, A.T. Polonsky, M.P. Echlin, S. Jacomet, J. de Jaeger, M. De Graef, N. Bozzolo, and T.M. Pollock: Scripta Mater., 2020, vol. 186, pp. 109–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Rolls-Royce plc and the Innovate-UK UHTNA and CRUISE projects. Drs Hardy, Buckingham, and Argyrakis would like to thank Rolls-Royce colleague Dr Han Tai for his support and encouragement in this work, Cameron Brett, Zak Lomas of Rolls-Royce, Andrew Wilkinson, and Stuart White of Intertek Derby for sample preparation and electron microscopy. Dr Hardy would also like to acknowledge discussions with Professor Catherine Rae of the University of Cambridge.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Hardy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The copyright holder was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardy, M.C., Buckingham, R.C., Severs, K. et al. Forging and Heat Treatment Conditions that Produce Visible Grains in a γγ′ Nickel-Based Superalloy. Metall Mater Trans A 54, 2112–2126 (2023). https://doi.org/10.1007/s11661-022-06943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06943-4

Navigation