Skip to main content

Advertisement

Log in

Anisotropic Stress Rupture Properties-Microstructure Relationships in SLM Inconel 718 Alloy

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The anisotropic of stress rupture properties of additive manufacturing superalloys at high temperatures affect their further applications in the aerospace field. In this study, selective laser melting (SLM) was used to prepare Inconel 718 blocks with axial direction normal or parallel to the building direction. The microstructure of different specimens was designed by process parameter control and post-processing. Tensile properties of horizontal and vertical specimens were tested at room temperature, and the stress rupture tests were performed at 650 °C under 690 MPa. The relationship between different microstructure and the anisotropy of stress rupture properties was studied. It is found that the grain morphology, grain boundary state and the morphology and location of precipitated phase have strong influence on the anisotropy. After the newly designed post-treatment including HIP + solution + aging, the normal temperature tensile property of vertical and horizontal specimens are maintained at a high level, besides the stress rupture life of vertical and horizontal specimens has the average time reach 173 and 131 hours at high temperature, respectively. This provides a basis for how to reduce the anisotropic stress rupture properties of SLM Inconel 718, which will have a positive impact on its wider application in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. M. Godec, S. Malej, D. Feizpour, Č Donik, M. Balažic, D. Klobčar, L. Pambaguian, M. Conradi, and A. Kocijan: Mater. Charact., 2021, vol. 172, pp. 110842–58.

    Article  CAS  Google Scholar 

  2. D.-H. Kim, J.-H. Kim, J.-W. Sa, Y.-S. Lee, C.-K. Park, and S.-I. Moon: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 262–65.

    Article  Google Scholar 

  3. Q. Yin, Z. Liu, B. Wang, Q. Song, and Y. Cai: Int. J. Adv. Manuf. Technol., 2020, vol. 109, pp. 215–45.

    Article  Google Scholar 

  4. C. Tan, F. Weng, S. Sui, Y. Chew, and G. Bi: Int. J. Mach. Tools Manuf., 2021, vol. 170, pp. 103804–62.

    Article  Google Scholar 

  5. H.-Y. Wan, Z.-J. Zhou, C.-P. Li, G.-F. Chen, and G.-P. Zhang: Adv. Eng. Mater., 2018, vol. 20, pp. 1800307–13.

    Article  Google Scholar 

  6. D. Deng, R.L. Peng, and J. Moverare: Int. J. Plast., 2021, vol. 140, pp. 102974–90.

    Article  CAS  Google Scholar 

  7. L. Huang, Y. Cao, J. Zhang, X. Gao, G. Li, and Y. Wang: J. Alloys Compd., 2021, vol. 865, pp. 158613–32.

    Article  CAS  Google Scholar 

  8. T. Trosch, J. Strößner, R. Völkl, and U. Glatzel: Mater. Lett., 2016, vol. 164, pp. 428–31.

    Article  CAS  Google Scholar 

  9. D. Zhang, Z. Feng, C. Wang, W. Wang, Z. Liu, and W. Niu: Mater. Sci. Eng. A, 2018, vol. 724, pp. 357–67.

    Article  CAS  Google Scholar 

  10. S. Banait, X. Jin, M. Campos, and M.T. Pérez-Prado: Scr. Mater., 2021, vol. 203, pp. 114075–80.

    Article  CAS  Google Scholar 

  11. O. Gokcekaya, N. Hayashi, T. Ishimoto, K. Ueda, T. Narushima, and T. Nakano: Addit. Manuf., 2020, vol. 36, pp. 101624–34.

    CAS  Google Scholar 

  12. S. Zhang, X. Lin, L. Wang, X. Yu, H. Yang, L. Lei, and W. Huang: Mater. Sci. Eng. A, 2021, vol. 803, pp. 140702–13.

    Article  CAS  Google Scholar 

  13. Q. Teng, S. Li, Q. Wei, and Y. Shi: J. Manuf. Processes, 2021, vol. 61, pp. 35–45.

    Article  Google Scholar 

  14. N. Kouraytem, J. Varga, B. Amin-Ahmadi, H. Mirmohammad, R.A. Chanut, A.D. Spear, and O.T. Kingstedt: Mater. Des., 2021, vol. 198, pp. 109228–40.

    Article  CAS  Google Scholar 

  15. M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang, and K. Zhou: Mater. Sci. Eng. A, 2017, vol. 701, pp. 344–52.

    Article  CAS  Google Scholar 

  16. W.M. Tucho and V. Hansen: Metals, 2021, vol. 11, pp. 266–85.

    Article  CAS  Google Scholar 

  17. X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, and G.F. Chen: Mater. Des., 2019, vol. 180, pp. 107915–23.

    Article  CAS  Google Scholar 

  18. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo, and L. Alzina: Mater. Des., 2017, vol. 131, pp. 12–22.

    Article  CAS  Google Scholar 

  19. D.J. Newell, R.P. O’Hara, G.R. Cobb, A.N. Palazotto, M.M. Kirka, L.W. Burggraf, and J.A. Hess: Mater. Sci. Eng. A, 2019, vol. 764, pp. 138230–41.

    Article  CAS  Google Scholar 

  20. J. Cormier, P. Gadaud, M. Czaplicki, R.Y. Zhang, H.B. Dong, T.M. Smith, F. Zhang, J.S. Tiley, and S.L. Semiatin: Metall. Mater. Trans. A, 2020, vol. 52, pp. 500–11.

    Article  Google Scholar 

  21. J.-P. Choi, G.-H. Shin, S. Yang, D.-Y. Yang, J.-S. Lee, M. Brochu, and J.-H. Yu: Powder Technol., 2017, vol. 310, pp. 60–66.

    Article  CAS  Google Scholar 

  22. G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li, and G.F. Chen: Mater. Charact., 2018, vol. 136, pp. 398–406.

    Article  CAS  Google Scholar 

  23. R. Jiang, A. Mostafaei, Z. Wu, A. Choi, P.-W. Guan, M. Chmielus, and A.D. Rollett: Addit. Manuf., 2020, vol. 35, pp. 101282–95.

    CAS  Google Scholar 

  24. A. Hilaire, E. Andrieu, and X. Wu: Addit. Manuf., 2019, vol. 26, pp. 147–60.

    CAS  Google Scholar 

  25. P. Li, J. Zhou, Y. Gong, X. Meng, and J. Lu: J. Mech. Sci. Technol., 2021, vol. 35, pp. 2871–78.

    Article  Google Scholar 

  26. P. Fernandez-Zelaia, Y. Lee, S. Dryepondt, and M.M. Kirka: Int. J. Plast., 2022, vol. 151, pp. 103177–204.

    Article  CAS  Google Scholar 

  27. J. Xu, P. Kontis, R.L. Peng, and J. Moverare: Acta Mater., 2022, vol. 240, pp. 118307–27.

    Article  CAS  Google Scholar 

  28. P. Pant, S. Proper, V. Luzin, S. Sjöström, K. Simonsson, J. Moverare, S. Hosseini, V. Pacheco, and R.L. Peng: Addit. Manuf., 2020, vol. 36, pp. 101501–18.

    CAS  Google Scholar 

  29. Z. Xu, J.W. Murray, C.J. Hyde, and A.T. Clare: Addit. Manuf., 2018, vol. 24, pp. 486–97.

    CAS  Google Scholar 

  30. Z. Xu, L. Cao, Q. Zhu, C. Guo, X. Li, X. Hu, and Z. Yu: Mater. Sci. Eng. A, 2020, vol. 794, pp. 139947–58.

    Article  CAS  Google Scholar 

  31. D.B. Witkin, R.W. Hayes, T.D. McLouth, and G.E. Bean: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3458–65.

    Article  CAS  Google Scholar 

  32. L. Xu, Z. Chai, H. Chen, X. Zhang, J. Xie, and X. Chen: Mater. Sci. Eng. A, 2021, vol. 824, pp. 141822–38.

    Article  CAS  Google Scholar 

  33. S. Zhang, L. Wang, X. Lin, H. Yang, M. Li, L. Lei, and W. Huang: Compos. B, 2021, vol. 224, pp. 109202–12.

    Article  CAS  Google Scholar 

  34. J.J. Shi, S.A. Zhou, H.H. Chen, G.H. Cao, A.M. Russell, Z.J. Zhou, X.B. Qi, C.P. Li, and G.F. Chen: Mater. Sci. Eng. A, 2021, vol. 805, pp. 140583–94.

    Article  CAS  Google Scholar 

  35. Z. Zhang, J.C. Khong, B. Koe, S. Luo, S. Huang, L. Qin, S. Cipiccia, D. Batey, A.J. Bodey, C. Rau, Y.L. Chiu, Z. Zhang, J.-C. Gebelin, N. Green, and J. Mi: Scr. Mater., 2021, vol. 193, pp. 71–76.

    Article  CAS  Google Scholar 

  36. Z. Zhang, Z. Yang, S. Lu, A. Harte, R. Morana, and M. Preuss: Nat. Commun., 2020, vol. 11, pp.

  37. F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, and S. Primig: Acta Mater., 2018, vol. 156, pp. 116–24.

    Article  CAS  Google Scholar 

  38. M. Ni, S. Liu, C. Chen, R. Li, X. Zhang, and K. Zhou: Mater. Sci. Eng. A, 2019, vol. 748, pp. 275–85.

    Article  CAS  Google Scholar 

  39. X. Yu, X. Lin, H. Tan, Y. Hu, S. Zhang, F. Liu, H. Yang, and W. Huang: Int. J. Fatigue, 2021, vol. 143, pp. 106005–18.

    Article  CAS  Google Scholar 

  40. S. Sanchez, G. Gaspard, C.J. Hyde, I.A. Ashcroft, R. G.A, and A.T. Clare: Mater. Des., 2021, vol. 204, pp. 109647–64.

  41. W. Chen and M.C. Chaturvedi: Acta Mater., 1997, vol. 45, pp. 2735–46.

    Article  CAS  Google Scholar 

  42. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng: J. Mater. Process. Technol., 2014, vol. 214, pp. 2660–67.

    Article  CAS  Google Scholar 

  43. S. Sui, J. Chen, L. Ma, W. Fan, H. Tan, F. Liu, and X. Lin: J. Alloys Compd., 2019, vol. 770, pp. 125–35.

    Article  CAS  Google Scholar 

  44. Q. Han, Y. Gu, R. Setchi, F. Lacan, R. Johnston, S.L. Evans, and S. Yang: Addit. Manuf., 2019, vol. 30, pp. 100919–930.

    CAS  Google Scholar 

  45. A.R. Balachandramurthi, J. Moverare, T. Hansson, and R. Pederson: Int. J. Fatigue, 2020, vol. 141, pp. 105898–5910.

    Article  CAS  Google Scholar 

  46. S. Goel, E. Zaninelli, T. Gundgire, M. Ahlfors, O. Ojo, U. Klement, and S. Joshi: Mater. Sci. Eng. A, 2021, vol. 820, pp. 141515–31.

    Article  CAS  Google Scholar 

  47. T.N. Palleda, S. Banoth, Y.-L. Kuo, and K. Kakehi: Metals, 2022, vol. 12, pp. 446–58.

    Article  CAS  Google Scholar 

  48. G.W.S. Christopher, F. Miller, and R.P. Wei: Scr. Mater., 2000, vol. 42, pp. 227–32.

    Article  Google Scholar 

  49. T.D. McLouth, D.B. Witkin, J.R. Lohser, G.E. Bean, S.D. Sitzman, P.M. Adams, J.-M. Yang, and R.J. Zaldivar: J. Mater. Eng. Perform., 2021, vol. 30, pp. 4882–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Science and Technology on Reactor Fuel and Materials Laboratory and the National Key Project of Research and Development Program of China (2018YFB1900105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Guo, S. & Xu, Y. Anisotropic Stress Rupture Properties-Microstructure Relationships in SLM Inconel 718 Alloy. Metall Mater Trans A 54, 1776–1791 (2023). https://doi.org/10.1007/s11661-022-06872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06872-2

Navigation