Skip to main content
Log in

Dependence on Manufacturing Directions of Tensile Behavior and Microstructure Evolution of Selective Laser Melting Manufactured Inconel 625

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current study, the microstructure and anisotropic mechanical properties of Inconel 625 superalloy prepared by selective laser melting were studied. Due to the cube texture and small grain size, the samples printed along the horizontal direction show the highest strength and the lowest ductility compared to the diagonal and vertical samples. In addition, the various work-hardening behaviors have also been considered from the perspective of grain size and texture. The horizontal sample shows the highest strength with a severe work-hardening effect. The Schmid factor is calculated to identify hard- and soft-oriented grains and their different deformation response based on the electron backscatter diffraction. Finally, the failure mechanisms of the selective laser melted Inconel 625 superalloy with different manufacturing directions were discussed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. S. Pratheesh Kumar, S. Elangovan, R. Mohanraj, and J.R. Ramakrishna, A review on Properties of Inconel 625 and Inconel 718 Fabricated Using Direct Energy Deposition, Mater. Today Proc., 2021, 46, p 7892–7906.

    Article  CAS  Google Scholar 

  2. E. Cakmak, M.M. Kirka, T.R. Watkins, R.C. Cooper, K. An, H. Choo, W. Wu, R.R. Dehoff, and S.S. Babu, Microstructural and Micromechanical Characterization of IN718 Theta Shaped Specimens Built with Electron Beam Melting, Acta Mater., 2016, 108, p 161–175.

    Article  CAS  Google Scholar 

  3. R.R. Dehoff and S.S. Babu, Characterization of Interfacial Microstructures in 3003 Aluminum Alloy Blocks Fabricated by Ultrasonic Additive Manufacturing, Acta Mater., 2010, 58(13), p 4305–4315.

    Article  CAS  Google Scholar 

  4. W.J. Sames, K.A. Unocic, R.R. Dehoff, T. Lolla, and S.S. Babu, Thermal Effects on Microstructural Heterogeneity of Inconel 718 Materials Fabricated by Electron Beam Melting, J. Mater. Res., 2014, 29(17), p 1920–1930.

    Article  CAS  Google Scholar 

  5. C.A. Brice and W.H. Hofmeister, Determination of Bulk Residual Stresses in Electron Beam Additive-Manufactured Aluminum, Metall. Mater. Trans. A, 2013, 44(11), p 5147–5153.

    Article  CAS  Google Scholar 

  6. J.B. Roca, P. Vaishnav, E.R.H. Fuchs, and M.G. Morgan, Policy Needed for Additive Manufacturing, Nat. Mater., 2016, 15(8), p 815–818.

    Article  Google Scholar 

  7. A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, and R.B. Wicker, Joining of Inconel 718 and 316 Stainless Steel Using Electron Beam Melting Additive Manufacturing Technology, Mater. Des., 2016, 94, p 17–27.

    Article  CAS  Google Scholar 

  8. X. Wang and K. Chou, Electron Backscatter Diffraction Analysis of Inconel 718 Parts Fabricated by Selective Laser Melting Additive Manufacturing, JOM, 2016, 69(2), p 402–408.

    Article  Google Scholar 

  9. L. Cui, F. Jiang, R.L. Peng, R.T. Mousavian, Z. Yang, and J. Moverare, Dependence of Microstructures on Fatigue Performance of Polycrystals: A Comparative Study of Conventional and Additively Manufactured 316L Stainless Steel, Int. J. Plast, 2022, 149, p 103172.

    Article  CAS  Google Scholar 

  10. H. Jia, H. Sun, H. Wang, Y. Wu, and H. Wang, Scanning Strategy in Selective Laser Melting (SLM): A Review, Int. J. Adv. Manuf. Technol., 2021, 113(9–10), p 2413–2435.

    Article  Google Scholar 

  11. H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, and G.P. Zhang, Effect of Scanning Strategy on Grain Structure and Crystallographic Texture of Inconel 718 Processed by Selective Laser Melting, J. Mater. Sci. Technol., 2018, 34(10), p 1799–1804.

    Article  Google Scholar 

  12. B. AlMangour, D. Grzesiak, and J.-M. Yang, Scanning Strategies for Texture and Anisotropy Tailoring during Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites, J. Alloys Compd., 2017, 728, p 424–435.

    Article  CAS  Google Scholar 

  13. L. Zhang, S. Zhang, and H. Zhu, Effect of Scanning Strategy on Geometric Accuracy of the Circle Structure Fabricated by Selective Laser Melting, J. Manuf. Process., 2021, 64, p 907–915.

    Article  Google Scholar 

  14. D. Du, A. Dong, D. Shu, G. Zhu, B. Sun, X. Li, and E. Lavernia, Influence of Build Orientation on Microstructure, Mechanical and Corrosion Behavior of Inconel 718 Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2019, 760, p 469–480.

    Article  CAS  Google Scholar 

  15. Y.-J. Kang, S. Yang, Y.-K. Kim, B. AlMangour, and K.-A. Lee, Effect of Post-Treatment on the Microstructure and High-Temperature Oxidation Behaviour of Additively Manufactured Inconel 718 Alloy, Corros. Sci., 2019, 158, p 108082.

    Article  CAS  Google Scholar 

  16. G. Marchese, S. Parizia, M. Rashidi, A. Saboori, D. Manfredi, D. Ugues, M. Lombardi, E. Hryha, and S. Biamino, The Role of Texturing and Microstructure Evolution on the Tensile Behavior of Heat-Treated Inconel 625 Produced via Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2020, 769, p 138500.

    Article  CAS  Google Scholar 

  17. Y. Hu, X. Lin, Y. Li, Y. Ou, X. Gao, Q. Zhang, W. Li, and W. Huang, Microstructural Evolution and Anisotropic Mechanical Properties of Inconel 625 Superalloy Fabricated by Directed Energy Deposition, J. Alloys Compd., 2021, 870, p 159426.

    Article  CAS  Google Scholar 

  18. M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang, and K. Zhou, Anisotropic Tensile Behavior of In Situ Precipitation Strengthened Inconel 718 Fabricated by Additive Manufacturing, Mater. Sci. Eng. A, 2017, 701, p 344–351.

    Article  CAS  Google Scholar 

  19. ISO 6892-1:2016 Metallic materials—Tensile testing—Part 1: Method of test at room temperature.

  20. H. Zhang, P. Li, X. Gong, T. Wang, L. Li, Y. Liu, and Q. Wang, Tensile Properties, Strain Rate Sensitivity and Failure Mechanism of Single Crystal Superalloys CMSX-4, Mater. Sci. Eng. A, 2020, 782, p 139105.

    Article  CAS  Google Scholar 

  21. A. Kreitcberg, V. Brailovski, and S. Turenne, Effect of Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Inconel 625 Alloy Processed by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2017, 689, p 1–10.

    Article  CAS  Google Scholar 

  22. L.N. Carter, C. Martin, P.J. Withers, and M.M. Attallah, The Influence of the Laser Scan Strategy on Grain Structure and Cracking Behaviour in SLM Powder-Bed Fabricated Nickel Superalloy, J. Alloy. Compd., 2014, 615, p 338–347.

    Article  CAS  Google Scholar 

  23. S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952.

    Article  CAS  Google Scholar 

  24. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Texture Control during Laser Deposition of Nickel-Based Superalloy, Scr. Mater., 2012, 67(5), p 503–506.

    Article  CAS  Google Scholar 

  25. M. Liu, Q. Wang, Y. Cai, D. Lu, T. Wang, Y. Pei, H. Zhang, Y. Liu, and Q. Wang, Comparison in Deformation Behavior, Microstructure, and Failure Mechanism of Nickel Base Alloy 625 under Two Strain Rates, Materials (Basel), 2021, 14(10), p 2652.

    Article  CAS  Google Scholar 

  26. L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, and R.B. Wicker, Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting, Metall. Mater. Trans. A, 2011, 42(11), p 3491–3508.

    Article  CAS  Google Scholar 

  27. H.Y. Wu and G.Z. Zhou, Plastic Anisotropy and Strain-Hardening Behavior of Mg-6%Li-1%Zn Alloy Thin Sheet at Elevated Temperatures, J. Mater. Sci., 2009, 44(22), p 6182–6186.

    Article  CAS  Google Scholar 

  28. J. Mittra, J.S. Dubey, U.D. Kulkarni, and G.K. Dey, Role of Dislocation Density in Raising the Stage II Work-Hardening Rate of Alloy 625, Mater. Sci. Eng. A, 2009, 512(1–2), p 87–91.

    Article  Google Scholar 

  29. J.A. del Valle, F. Carreño, and O.A. Ruano, Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-Based Alloys Processed by ECAP and Rolling, Acta Mater., 2006, 54(16), p 4247–4259.

    Article  Google Scholar 

  30. J.A. Muñoz, O.F. Higuera, and J.M. Cabrera, Microstructural and Mechanical Study in the Plastic Zone of ARMCO Iron Processed by ECAP, Mater. Sci. Eng. A, 2017, 697, p 24–36.

    Article  Google Scholar 

  31. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys, Metall. Mater. Trans. A, 2009, 40(7), p 1588–1603.

    Article  Google Scholar 

  32. J.K. Chakravartty, J.B. Singh, and M. Sundararaman, Microstructural and Mechanical Properties of Service Exposed Alloy 625 Ammonia Cracker Tube Removed after 100 000 h, Mater. Sci. Technol., 2013, 28(6), p 702–710.

    Article  Google Scholar 

  33. Q. Guo, D. Li, S. Guo, H. Peng, and J. Hu, The Effect of Deformation Temperature on the Microstructure Evolution of Inconel 625 Superalloy, J. Nucl. Mater., 2011, 414(3), p 440–450.

    Article  CAS  Google Scholar 

  34. Y. Zhang, Y. Huang, L. Yang, and J. Li, Evolution of Microstructures at a Wide Range of Solidification Cooling Rate in a Ni-Based Superalloy, J. Alloy. Compd., 2013, 570, p 70–75.

    Article  CAS  Google Scholar 

  35. H.A. Roth, C.L. Davis, and R.C. Thomson, Modeling Solid Solution Strengthening in Nickel Alloys, Metall. Mater. Trans. A, 1997, 28(6), p 1329–1335.

    Article  Google Scholar 

  36. J.A. Muñoz, Geometrically Necessary Dislocations (GNDs) in Iron Processed by Equal Channel Angular Pressing (ECAP), Mater. Lett., 2019, 238, p 42–45.

    Article  Google Scholar 

  37. J.A. Muñoz, O.F. Higuera, A.H. Expósito, A. Boulaajaj, R.E. Bolmaro, F.D. Dumitru, P.R. Calvillo, A.M. Jorge, and J.M. Cabrera, Thermal Stability of ARMCO Iron Processed by ECAP, Int. J. Adv. Manuf. Technol., 2018, 98(9–12), p 2917–2932.

    Article  Google Scholar 

  38. R.E. Smallman and A.H.W. Ngan, Plastic Deformation and Dislocation Behaviour. In Modern Physical Metallurgy (2014) pp. 357–414

  39. S. Li, S.-S. Rui, K. Li, M. Hu, X. Zhang, X. Li, Z. Cai, and J. Pan, A Modification to the Two Driving Forces Model for Fatigue Threshold Prediction, Int. J. Fatigue, 2021, 149, p 106259.

    Article  CAS  Google Scholar 

  40. A. Deschamps, M. Niewczas, F. Bley, Y. Brechet, J.D. Embury, L.L. Sinq, F. Livet, and J.P. Simon, Low-Temperature Dynamic Precipitation in a Supersaturated AI-Zn-Mg Alloy and Related Strain Hardening, Philos. Mag. A, 1999, 79(10), p 2485–2504.

    Article  CAS  Google Scholar 

  41. Y.J.M.S. Bergström, A Dislocation Model for the Stress-Strain Behaviour of Polycrystalline α-Fe with Special Emphasis on the Variation of the Densities of Mobile and Immobile Dislocations, Mater. Sci. Eng., 1970, 5(4), p 193–200.

    Article  Google Scholar 

  42. J.T. Michalak, The Influence of Temperature on the Development of Long-Range Internal Stress during the Plastic Deformation of High-Purity Iron, Acta Metall., 1965, 13(3), p 213–222.

    Article  CAS  Google Scholar 

  43. Z. Zhao, L. Li, W. Yang, Y. Zeng, Y. Lian, and Z. Yue, A Comprehensive Study of the Anisotropic Tensile Properties of Laser Additive Manufactured Ni-Based Superalloy after Heat Treatment, Int. J. Plast., 2022, 148, p 103147.

    Article  CAS  Google Scholar 

  44. P.C. Gasson, Mechanical Behavior of Materials—Second edition W. F. Hosford Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 2RU, UK. 2010. 419 pp. £ 55. ISBN 978-0-521-19569-0. % J. Aeronaut. J. 114(1158) (2010) p. 520

  45. G. Liu, J. Salvat Cantó, S. Winwood, K. Rhodes, and S. Birosca, The Effects of Microstructure and Microtexture Generated during Solidification on Deformation Micromechanism in IN713C Nickel-Based Superalloy, Acta Mater., 2018, 148, p 391–406.

    Article  CAS  Google Scholar 

  46. F. Bachmann, R. Hielscher, and H.J.S.S.P. Schaeben, Texture Analysis with MTEX—Free and Open Source Software Toolbox, 160(160)63–68 (2010)

  47. R. Hielscher, The Schmid Factor. MTEX. (2020, Sep 12). Retrived 13 Sep 2022 from https://github.com/mtex-toolbox/mtex/blob/develop/doc/Plasticity/SchmidtFactor.m.

  48. A.J. Wilkinson, G. Meaden, and D.J. Dingley, High-Resolution Elastic Strain Measurement from Electron Backscatter Diffraction Patterns: New Levels of Sensitivity, Ultramicroscopy, 2006, 106(4–5), p 307–313.

    Article  CAS  Google Scholar 

  49. W. Liu, Q. Hu, Y. Chen, C. Tang, C. Zhao, M. Xiao, and Y. Song, Investigation on Fatigue Crack Propagation Behaviors in the Thickness Direction of 2519A Aluminum Alloy Thick Plate, Int. J. Fatigue, 2022, 163, p 107099.

    Article  CAS  Google Scholar 

  50. F. Liu, H. Peng, Y. Liu, C. Wang, Q. Wang, and Y. Chen, Crack Initiation Mechanism of Titanium Alloy in Very High Cycle Fatigue Regime at 400 °C Considering Stress Ratio Effect, Int. J. Fatigue, 2022, 163, p 107012.

    Article  CAS  Google Scholar 

  51. S. Wang, P. Li, Y. Wu, X. Liu, Q. Lin, and G. Chen, Micromechanical Behavior of Ti-2Al-2.5Zr Alloy under Cyclic Loading Using Crystal Plasticity Modeling, Int. J. Fatigue, 2022, 161, p 106890.

    Article  CAS  Google Scholar 

  52. M.D. Sangid, T.A. Book, D. Naragani, J. Rotella, P. Ravi, A. Finch, P. Kenesei, J.-S. Park, H. Sharma, J. Almer, and X. Xiao, Role of Heat Treatment and Build Orientation in the Microstructure Sensitive Deformation Characteristics of IN718 Produced via SLM Additive Manufacturing, Addit. Manuf., 2018, 22, p 479–496.

    CAS  Google Scholar 

  53. J.V. Bernier, R.M. Suter, A.D. Rollett, and J.D. Almer, High-Energy X-Ray Diffraction Microscopy in Materials Science, Annu. Rev. Mater. Res., 2020, 50(1), p 395–436.

    Article  CAS  Google Scholar 

  54. D. Raabe, Z. Zhao, S.J. Park, and F. Roters, Theory of Orientation Gradients in Plastically Strained Crystals, Acta Mater., 2002, 50(2), p 421–440.

    Article  CAS  Google Scholar 

  55. X.Y. Fang, H.Q. Li, M. Wang, C. Li, and Y.B. Guo, Characterization of Texture and Grain Boundary Character Distributions of Selective Laser Melted Inconel 625 Alloy, Mater. Charact., 2018, 143, p 182–190.

    Article  CAS  Google Scholar 

  56. S. Zhang, N. Tian, D. Li, J. Li, F. Jin, G. Wang, and S. Tian, Microstructure Evolution and Fracture Mechanism of a TiAl-Nb Alloy during High-Temperature Tensile Testing, Mater. Sci. Eng. A, 2022, 831, p 142094.

    Article  CAS  Google Scholar 

  57. S. Birosca, G. Liu, R. Ding, J. Jiang, T. Simm, C. Deen, and M. Whittaker, The Dislocation Behaviour and GND Development in a Nickel Based Superalloy during Creep, Int. J. Plast., 2019, 118, p 252–268.

    Article  CAS  Google Scholar 

  58. S. Birosca, F. Di Gioacchino, S. Stekovic, and M. Hardy, A Quantitative Approach to Study the Effect of Local Texture and Heterogeneous Plastic Strain on the Deformation Micromechanism in RR1000 Nickel-Based Superalloy, Acta Mater., 2014, 74, p 110–124.

    Article  CAS  Google Scholar 

  59. G. Gottstein, Annealing Texture Development by Multiple Twinning in f.c.c Crystals, Acta Metall., 1984, 32(7), p 1117–1138.

    Article  CAS  Google Scholar 

  60. D.P. Field, P.B. Trivedi, S.I. Wright, and M. Kumar, Analysis of Local Orientation Gradients in Deformed Single Crystals, Ultramicroscopy, 2005, 103(1), p 33–39.

    Article  CAS  Google Scholar 

  61. D. Turan, D. Hunt and D.M. Knowles, Dwell Time Effect on Fatigue Crack Growth of RR1000 Superalloy, Mater. Sci. Technol., 2013, 23(2), p 183–188.

    Article  Google Scholar 

  62. U.F. Kocks, C.N. Tome, H.R. Wenk, and H. Mecking, Texture and Anisotropy:Preferred Orientations in Polycrystals and their Effect on Materials Properties, Texture and Anisotropy:Preferred Orientations in Polycrystals and their Effect On Materials Properties (1998)

  63. A. Clair, M. Foucault, O. Calonne, Y. Lacroute, L. Markey, M. Salazar, V. Vignal, and E. Finot, Strain Mapping Near a Triple Junction in Strained Ni-Based Alloy Using EBSD and Biaxial Nanogauges, Acta Mater., 2011, 59(8), p 3116–3123.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Research Funds of China (No. 11832007, No.12172238, No. 12272245), National postdoctoral funds of China (No. 2019M653396), National key R & D Program (No. 2018YFE0307104), Applied Basic Research Programs of Sichuan Province (No. 2022NSFSC0324), the Sichuan University & ZiGong Government Support Program (No. 2019CDZG-4), and International Visiting Program for Excellent Young Scholars of SCU. The authors are sincerely grateful and supported by the fund of the State Key Laboratory of Long-life High-Temperature Materials (No. DECSKL202102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhang or Qingyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, Q., Cai, Y. et al. Dependence on Manufacturing Directions of Tensile Behavior and Microstructure Evolution of Selective Laser Melting Manufactured Inconel 625. J. of Materi Eng and Perform 32, 7488–7500 (2023). https://doi.org/10.1007/s11665-022-07622-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07622-6

Keywords

Navigation