Skip to main content
Log in

Connecting the Precipitation Behaviors on Internal Cavity Surfaces and External Surfaces in an Al–Si Alloy

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Whether the cavity filling efficiency of surface segregation alloys can be quantitatively reproduced by external surface precipitations remains unclear. Hence the precipitation behaviors on external surfaces and internal cavity surfaces have been characterized and compared systemically. Results have shown that internal cavity precipitation behaviors can be better represented by external precipitations thermodynamically and kinetically when applying direct annealing treatment, which is due to the similar segregation behavior of solution atoms along internal and external surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. S. van der Zwaag: Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, Springer, Dordrecht, 2008.

    Google Scholar 

  2. R.N. Lumley, A.J. Morton, and I.J. Polmear: Acta Mater., 2002, vol. 50, pp. 3597–3608.

    Article  CAS  Google Scholar 

  3. K. Laha, J. Kyono, and N. Shinya: Scripta Mater, 2007, vol. 56, pp. 915–18.

    Article  CAS  Google Scholar 

  4. S.M. He, N.H. Van Dijk, M. Paladugu, H. Schut, J. Kohlbrecher, F.D. Tichelaar, and S. Van der Zwaag: Phys. Rev. B, 2010, vol. 82, p. 174111.

    Article  Google Scholar 

  5. S.M. He, P.N. Brandhoff, H. Schut, S. van der Zwaag, and N.H. van Dijk: J. Mater. Sci., 2013, vol. 48, pp. 6150–56.

    Article  CAS  Google Scholar 

  6. S. Zhang, J. Kohlbrecher, F.D. Tichelaar, G. Langelaan, E. Brück, S. van der Zwaag, and N.H. van Dijk: Acta Mater., 2013, vol. 61, pp. 7009–19.

    Article  CAS  Google Scholar 

  7. H. Fang, C.D. Versteylen, S. Zhang, Y. Yang, P. Cloetens, D. Ngan-Tillard, E. Brück, S. van der Zwaag, and N.H. van Dijk: Acta Mater., 2016, vol. 121, pp. 352–64.

    Article  CAS  Google Scholar 

  8. S. Zhang, H. Fang, M.E. Gramsma, C. Kwakernaak, W.G. Sloof, F.D. Tichelaar, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, S. van der Zwaag, and N.H. van Dijk: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4831–44.

    Article  CAS  Google Scholar 

  9. H. Fang, N. Szymanski, C.D. Versteylen, P. Cloetens, C. Kwakernaak, W.G. Sloof, F.D. Tichelaar, S. Balachandran, M. Herbig, E. Brück, S. van der Zwaag, and N.H. van Dijk: Acta Mater., 2019, vol. 166, pp. 531–42.

    Article  CAS  Google Scholar 

  10. S. Zhang, J. Cizek, Z. Yao, M. Oleksandr, X. Kong, C. Liu, N. van Dijk, and S. van der Zwaag: J. Alloy Compd., 2020, vol. 817, p. 152765.

    Article  CAS  Google Scholar 

  11. S. Zhang, Z. Yao, Z. Zhang, and M. Oleksandr: Appl. Surf. Sci., 2020, vol. 504, p. 144383.

    Article  CAS  Google Scholar 

  12. N. van Dijk and S. van der Zwaag: Adv. Mater. Interfaces, 2018, vol. 5, p. 1800226.

    Article  Google Scholar 

  13. M.J. Kelley and V. Ponec: Prog. Surf. Sci., 1981, vol. 11, pp. 139–244.

    Article  Google Scholar 

  14. G. Ehrlich and K. Stolt: Annu. Rev. Phys. Chem., 1980, vol. 31, pp. 603–37.

    Article  CAS  Google Scholar 

  15. M. Bizjak, B. Karpe, G. Jakša, and J. Kovač: Appl. Surf. Sci., 2013, vol. 277, pp. 83–87.

    Article  CAS  Google Scholar 

  16. Y. Chen, X.Y. Fang, Y. Brechet, and C.R. Hutchinson: Acta Mater., 2014, vol. 81, pp. 291–303.

    Article  CAS  Google Scholar 

  17. W.W. Sun, H. Fang, N.H. van Dijk, S. van der Zwaag, and C.R. Hutchinson: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2109–14.

    Article  CAS  Google Scholar 

  18. Y. Fu, C. Kwakernaak, J.C. Brouwer, W.G. Sloof, E. Brück, S. van der Zwaag, and N.H. van Dijk: J. Mater. Sci., 2021, vol. 56, pp. 5173–89.

    Article  CAS  Google Scholar 

  19. Y. Fu, C. Kwakernaak, W.G. Sloof, F.D. Tichelaar, E. Brück, S. van der Zwaag, and N.H. van Dijk: Metall. Mater. Trans. A, 2020, vol. 51, pp. 4442–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the National Natural Science Foundation of China (No. 51790481), and the Fundamental Research Funds for the Central Universities (No. N2107006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figures A1 and A2

Fig. A1
figure 6

The comparison of heat treatment and precipitation kinetics in Fe–Au alloy

Fig. A2
figure 7

The samples preparation (a), (b) with both (c) external surface and (d) internal cavity surface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Yang, S., Wang, L. et al. Connecting the Precipitation Behaviors on Internal Cavity Surfaces and External Surfaces in an Al–Si Alloy. Metall Mater Trans A 53, 3809–3816 (2022). https://doi.org/10.1007/s11661-022-06799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06799-8

Navigation