Skip to main content
Log in

Effect of High-Temperature Air Exposure on the Microstructure and Mechanical Properties of β-Ti Honeycomb Sandwich Panels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-β-21S honeycomb sandwich panels are used for aeroengine exhaust components due to its light density, high specific strength, and great resistance to hot aircraft hydraulic fluid. However, exposure titanium and its alloys to oxygen can affect the mechanical properties of the materials, and consequently, this point needs to be investigated. In this paper, the microstructure and mechanical properties of Ti-β-21S honeycomb sandwich panels exposed at 650 °C for periods from 125 to 500 h were investigated. The honeycomb core and face-sheets were made of Ti-β-21S metal, and they were brazed with Ti–15Cu–15Ni brazing filler metal. Prior to air exposure, the microstructural examinations of the as-brazed joint revealed the formation of α-Ti, β-Ti, Ti2Ni, Ti2(Cu, Ni), and Ti2(Ni, Cu) intermetallic compounds. Results showed that the Ti2Ni intermetallic compound exhibits a higher hardness value, which could increases the brittleness of the brazing seam. Under air exposure, a uniform alpha-case layer was developed at the face-sheet subsurface, while no significant change is observed in the morphology and the microstructure of the brazed joint phases. It has been shown that the thickness of the alpha-case layer was increased in a parabolic manner with increasing exposure time. In addition, the flexural shear strength of the honeycomb structure decreases with increasing exposure time. The degrading effect of the alpha-case layer on the shear strength of the honeycomb structure increased with increasing thickness. Indeed, the alpha-case layer is enriched with oxygen making the surface harder and brittle, which results in a decrease in the shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

(Adapted from reference [27]). There are four types of phase-transformation path produced by isothermal diffusion and dilution of parent-metals (paths 1 and 3), and cooling (paths 2 and 4). Mark (·) is the composition of original filler metal

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Shang, Y. Wu, Y. Fang, and Y. Li: Materials, 2020, vol. 13, p. 3008.

    Article  CAS  Google Scholar 

  2. B. Wang, L.Z. Wu, L. Ma, and J.C. Feng: Compos. Part B Eng., 2011, vol. 42, pp. 891–97. https://doi.org/10.1016/j.compositesb.2011.01.007.

    Article  CAS  Google Scholar 

  3. Z.J. Zhang, Q.C. Zhang, D.Z. Zhang, Y.L. Feng, and D.N. Fang: Thin Walled Struct., 2020, vol. 151, p. 106757.

    Article  Google Scholar 

  4. T. Subhani: Eng. Technol. Appl. Sci. Res., 2019, vol. 9, pp. 3955–58.

    Article  Google Scholar 

  5. Z. Wang: Compos. Part B Eng., 2019, vol. 166, pp. 731–41. https://doi.org/10.1016/j.compositesb.2019.02.011.

    Article  Google Scholar 

  6. S.U. Kyzy, R. Völkl, O. Munz, T. Fischer, and U. Glatzel: Eng. Perform., 2019, vol. 28, pp. 1909–13.

    Article  Google Scholar 

  7. A. Pydah and R.C. Batra: Thin Walled Struct., 2018, vol. 129, pp. 45–57. https://doi.org/10.1016/j.tws.2018.03.020.

    Article  Google Scholar 

  8. J. Xiong, M. Zhang, A. Stocchi, H. Hong, M. Li, W. Linzhi, and Z. Zhong: Compos. Part B Eng., 2014, vol. 60, pp. 350–58. https://doi.org/10.1016/j.compositesb.2013.12.049.

    Article  CAS  Google Scholar 

  9. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning: JOM, 2015, vol. 67, pp. 1281–1303.

    Article  CAS  Google Scholar 

  10. G. Welsch, R.R. Boyer, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM international, Materials Park, 1994.

    Google Scholar 

  11. A.E. Shapiro, Y. Flom, In: Proceedings of 8th International Conference in Brazing, High Temperature Brazing and Diffusion Welding, Aachen, Germany, 2007, pp. 254–67.

  12. O. Botstein, A. Schwarzman, and A. Rabinkin: Mater. Sci. Eng. A, 1996, vol. 206, pp. 14–23. https://doi.org/10.1016/0921-5093(95)09885-2.

    Article  Google Scholar 

  13. G.L. Yue, T.C. Chen, R.K. Shiue, and L.W. Tsay: Metals, 2020, vol. 10, p. 83. https://doi.org/10.3390/met10010083.

    Article  CAS  Google Scholar 

  14. C.T. Chang, R.K. Shiue, and C.S. Chang: Scripta Mater., 2006, vol. 54, pp. 853–58.

    Article  CAS  Google Scholar 

  15. Z.Y. Wu, R.K. Shiue, and C.S. Chang: J. Mater. Sci. Technol., 2010, vol. 26, pp. 311–16. https://doi.org/10.1016/S1005-0302(10)60051-5.

    Article  CAS  Google Scholar 

  16. C.T. Chang, T.Y. Yeh, R.K. Shiue, and C.S. Chang: J. Mater. Sci. Technol., 2011, vol. 27, pp. 131–38. https://doi.org/10.1016/S1005-0302(11)60038-8.

    Article  CAS  Google Scholar 

  17. R. Okada and M.T. Kortschot: Compos. Sci. Technol., 2002, vol. 62, pp. 1811–19. https://doi.org/10.1016/S0266-3538(02)00099-4.

    Article  CAS  Google Scholar 

  18. K.S. Reynolds and S. Tamirisakandala: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1732–36.

    Article  Google Scholar 

  19. H. Guleryuz and H. Cimenoglu: J. Alloys Compd., 2009, vol. 20, pp. 241–46. https://doi.org/10.1016/j.jallcom.2008.04.024.

    Article  CAS  Google Scholar 

  20. R. Gaddam, B. Sefer, R. Pederson, and M.L. Antti: Mater. Sci. Eng., 2013, vol. 48, p. 012002.

    CAS  Google Scholar 

  21. T.Y. Yang, R.K. Shiue, and S.K. Wu: Intermetallics, 2004, vol. 12, pp. 1285–92. https://doi.org/10.1016/j.intermet.2004.03.020.

    Article  CAS  Google Scholar 

  22. J. Dai and H. Thomas: Compos. Struct., 2003, vol. 61, pp. 247–53. https://doi.org/10.1016/S0263-8223(03)00040-0.

    Article  Google Scholar 

  23. W.R. Tyson: Scr. Met., 1969, vol. 3, pp. 917–21. https://doi.org/10.1016/0036-9748(69)90241-5.

    Article  CAS  Google Scholar 

  24. C.J. Rosa: Metall. Trans. A, 1970, vol. 1, pp. 2517–22. https://doi.org/10.1007/BF03038377.

    Article  CAS  Google Scholar 

  25. H.P. Tripp and B.W. King: J. Ceram. Soc., 1955, vol. 38, pp. 432–37. https://doi.org/10.1111/j.1151-2916.1955.tb14569.x.

    Article  CAS  Google Scholar 

  26. F. Sansoz, M. Almesallmy, and H. Ghonem: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3113–27. https://doi.org/10.1007/s11661-004-0056-1.

    Article  Google Scholar 

  27. I.T. Hong and C.H. Koo: Mater. Sci. Eng. A, 2005, vol. 398, pp. 113–27. https://doi.org/10.1016/j.msea.2005.03.007.

    Article  CAS  Google Scholar 

  28. J.M. Shi, L.X. Zhang, X.Y. Pan, X.Y. Tian, and J.C. Feng: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 1237–45. https://doi.org/10.1016/j.jeurceramsoc.2017.11.045.

    Article  CAS  Google Scholar 

  29. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, 1995.

    Google Scholar 

  30. T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990.

    Google Scholar 

  31. E. Ganjeh, H. Sarkhosh, M.E. Bajgholi, H. Khorsand, and M.H. Ghaffari: Mater. Charact., 2012, vol. 71, pp. 2517–22. https://doi.org/10.1016/j.matchar.2012.05.016.

    Article  CAS  Google Scholar 

  32. L. Wang, C. Meng, C. Liu, and L. Wang: J. Am. Ceram. Soc., 2002, vol. 85, pp. 2867–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support (APE RITA project) of this research by Region Haute Normandie (France), Safran Nacelles Company (SAFRAN group) for providing the brazed joint assembly, and CRT Analyses et Surfaces for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamen Ben Ammar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Ammar, Y., Khalfaoui, A., Wegmuller, N. et al. Effect of High-Temperature Air Exposure on the Microstructure and Mechanical Properties of β-Ti Honeycomb Sandwich Panels. Metall Mater Trans A 53, 3956–3967 (2022). https://doi.org/10.1007/s11661-022-06798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06798-9

Navigation