Skip to main content
Log in

High-Temperature CoNi-Based Superalloys Strengthened by γ′-(Ni,Co)3(Cr,Al,Ti,X): The Effect of Refractory Elements

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent research on Co-based and CoNi-based alloys revealed that the Co–Al–W-system provides interesting properties, however, the high content of W addition triggers high mass density of alloys which limits its industrial application. Therefore, new high temperature superalloys based on the Co–Ni–Al–Ti-system with high content Cr and strengthened by γ′-(Ni,Co)3(Cr,Al,Ti) precipitates, have been developed, and the effect of different refractory element additions was investigated. STEM-EDS and HEXRD were employed to determine the elemental partitioning behavior and the lattice misfit between the γ and γ′ phases. Ta and Nb strongly concentrate within the γ′ phase, whereas Mo weakly partitions to the γ phase. W distributes equally between the γ and γ′ phases. These new superalloys have an unexpectedly high positive misfit compared with some conventional Ni-based superalloys and Co-based superalloys. Nb and Ta additions increase the lattice misfit further, while Mo and W decrease the lattice misfit. The effect of refractory elements alloying on the yield stress at room temperature was evaluated by analyzing the contributions of different strengthening mechanisms. Alloying with Nb or Ta significantly improves precipitation strengthening by increasing the antiphase boundary energy. Mo has the highest solid solution strengthening effect in the γ phase, followed by W. Compared with some conventional Ni-based superalloys, the investigated new CoNi-based superalloys exhibited better mechanical properties at high temperature, which indicates that these compositionally complex alloys are possible candidates for high temperature applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed: The superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  2. Y.F. Gu, C. Cui, H. Harada, T. Fukuda, D. Ping, A. Mitsuhashi, and J. Fujioka: Superalloys, 2008, vol. 15, pp. 53–61.

    Google Scholar 

  3. J.C. Williams and E.A. Starke Jr.: Acta Mater., 2003, vol. 51(19), pp. 5775–99.

    Article  CAS  Google Scholar 

  4. H.A. Roth, C.L. Davis, and R.C. Thomson: Metall Mater. Trans. A, 1997, vol. 28(6), pp. 1329–35.

    Article  Google Scholar 

  5. A.W. Thompson: Acta Metall., 1977, vol. 25(1), pp. 83–86.

    Article  CAS  Google Scholar 

  6. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin: Mater Sci. Eng. A, 2001, vol. 301(1), pp. 35–43.

    Article  Google Scholar 

  7. F. Pyczak, A. Bauer, M. Göken, S. Neumeier, U. Lorenz, M. Oehring, and F. Symanzik: Mater. Sci. Eng. A, 2013, vol. 571, pp. 13–18.

    Article  CAS  Google Scholar 

  8. A. Suzuki and T.M. Pollock: Acta Mater., 2008, vol. 56(6), pp. 1288–97.

    Article  CAS  Google Scholar 

  9. S. Neumeier, L.P. Freund, and M. Göken: Scripta Mater., 2015, vol. 109, pp. 104–07.

    Article  CAS  Google Scholar 

  10. S.K. Makineni, B. Nithin, and K. Chattopadhyay: Acta Mater., 2015, vol. 85, pp. 85–94.

    Article  CAS  Google Scholar 

  11. Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, and X. Liu: Acta Mater., 2019, vol. 170, pp. 62–74.

    Article  CAS  Google Scholar 

  12. J.J. Ruan, X.J. Liu, S.Y. Yang, W.W. Xu, T. Omori, T. Yang, and K. Ishida: Intermetallics, 2018, vol. 92, pp. 126–32.

    Article  CAS  Google Scholar 

  13. C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, and M. Göken: Acta Mater., 2017, vol. 135, pp. 244–51.

    Article  CAS  Google Scholar 

  14. E.A. Lass, D.J. Sauza, D.C. Dunand, and D.N. Seidman: Acta Mater., 2018, vol. 147, pp. 284–95.

    Article  CAS  Google Scholar 

  15. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312(5770), pp. 90–91.

    Article  CAS  Google Scholar 

  16. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  17. X. Zhuang, S. Antonov, L. Li, and Q. Feng: Scripta Mater., 2021, vol. 202, 114004.

    Article  CAS  Google Scholar 

  18. W. Li, L. Li, S. Antonov, C. Wei, J.C. Zhao, and Q. Feng: J. Alloys Compd., 2021, vol. 881, 160618.

    Article  CAS  Google Scholar 

  19. H. Li, X. Zhuang, S. Lu, S. Antonov, L. Li, and Q. Feng: J. Alloys Compd., 2022, vol. 894, 162489.

    Article  CAS  Google Scholar 

  20. D.S. Ng, D.W. Chung, J.P. Toinin, D.N. Seidman, D.C. Dunand, and E.A. Lass: Mater. Sci. Eng. A, 2020, vol. 778, 139108.

    Article  CAS  Google Scholar 

  21. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, and Z.P. Lu: Acta Mater., 2016, vol. 102, pp. 187–96.

    Article  CAS  Google Scholar 

  22. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Acta Mater., 2011, vol. 59(16), pp. 6308–17.

    Article  CAS  Google Scholar 

  23. D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, and Y. Zhang: Acta Mater., 2017, vol. 123, pp. 285–94.

    Article  CAS  Google Scholar 

  24. Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai: Acta Mater., 2017, vol. 138, pp. 72–82.

    Article  CAS  Google Scholar 

  25. Y. Zhao, T. Yang, B. Han, J. Luan, D. Chen, W. Kai, and J.J. Kai: Mater. Res. Lett., 2019, vol. 7(4), pp. 152–58.

    Article  CAS  Google Scholar 

  26. T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, and C.T. Liu: Acta Mater., 2020, vol. 189, pp. 47–59.

    Article  CAS  Google Scholar 

  27. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Intermetallics, 2010, vol. 18(9), pp. 1758–65.

    Article  CAS  Google Scholar 

  28. S.S. Naghavi and V.I. Hegde: Acta Mater., 2017, vol. 132, pp. 467–78.

    Article  CAS  Google Scholar 

  29. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12.

    Article  CAS  Google Scholar 

  30. R.C. Reed, M.P. Jackson, and Y.S. Na: Metall Mater. Trans. A, 1999, vol. 30(3), pp. 521–33.

    Article  CAS  Google Scholar 

  31. Y.F. Gu, T. Fukuda, C. Cui, H. Harada, A. Mitsuhashi, T. Yokokawa, and T. Kobayashi: Metall. Mater. Trans. A, 2009, vol. 40(13), p. 3047.

    Article  Google Scholar 

  32. C.Y. Cui, Y.F. Gu, D.H. Ping, and H. Harada: Metall Mater. Trans. A, 2009, vol. 40(2), pp. 282–91.

    Article  Google Scholar 

  33. E.I. Galindo-Nava, L.D. Connor, and C.M.F. Rae: Acta Mater., 2015, vol. 98, pp. 377–90.

    Article  CAS  Google Scholar 

  34. C.H. Zenk, S. Neumeier, N.M. Engl, S.G. Fries, O. Dolotko, M. Weiser, and M. Göken: Scr. Mater., 2016, vol. 112, pp. 83–86.

    Article  CAS  Google Scholar 

  35. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman: Mater. Sci. Eng. A, 2017, vol. 705, pp. 122–32.

    Article  CAS  Google Scholar 

  36. C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken: Intermetallics, 2014, vol. 55, pp. 28–39.

    Article  CAS  Google Scholar 

  37. L. Wang, M. Oehring, Y. Liu, U. Lorenz, and F. Pyczak: Acta Mater., 2019, vol. 162, pp. 176–88.

    Article  CAS  Google Scholar 

  38. B. Nithin, A. Samanta, S.K. Makineni, T. Alam, P. Pandey, A.K. Singh, and K. Chattopadhyay: J. Mater. Sci., 2017, vol. 52(18), pp. 11036–47.

    Article  CAS  Google Scholar 

  39. P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M. Das, B. Nithin, and K. Chattopadhyay: Acta Mater., 2019, vol. 163, pp. 140–53.

    Article  CAS  Google Scholar 

  40. Y. Amouyal, Z. Mao, and D.N. Seidman: Acta Mater., 2010, vol. 58(18), pp. 5898–5911.

    Article  CAS  Google Scholar 

  41. J.P. Minshull, S. Neumeier, M.G. Tucker, and H.J. Stone: Adv. Mat. Res., 2011, vol. 278, pp. 399–404.

    CAS  Google Scholar 

  42. R.J. Mitchell, M. Preuss, M.C. Hardy, and S. Tin: Mater Sci. Eng. A, 2006, vol. 423(1–2), pp. 282–91.

    Article  Google Scholar 

  43. I. Povstugar, C.H. Zenk, R. Li, P.P. Choi, S. Neumeier, O. Dolotko, D. Raabe, and J. Mater: Sci. Technol., 2016, vol. 32(3), pp. 220–25.

    CAS  Google Scholar 

  44. Y.J. Chang and A.C. Yeh: Mater. Chem. Phys., 2018, vol. 210, pp. 111–19.

    Article  CAS  Google Scholar 

  45. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Adv. Eng. Mat., 2015, vol. 178, pp. 1113–18.

    Google Scholar 

  46. D.B. Williams and E.P. Butler: Int. Met. Rev., 1981, vol. 26, pp. 153–83.

    Article  CAS  Google Scholar 

  47. L. Fan, T. Yang, J.H. Luan, and Z.B. Jiao: J. Alloys Compd., 2020, vol. 15, p. 154903.

    Article  Google Scholar 

  48. Z. Yu, Y. Zheng, and Q. Feng: Scripta Mater., 2017, vol. 128, pp. 23–26.

    Article  CAS  Google Scholar 

  49. T.C. Duong, R.E. Hackenberg, V. Attari, A. Landa, P.E. Turchi, and R. Arróyave: Comput. Mater. Sci., 2020, vol. 175, 109573.

    Article  CAS  Google Scholar 

  50. A. Suzuki, G.C. DeNolf, and T.M. Pollock: Scripta Mater., 2007, vol. 56(5), pp. 385–88.

    Article  CAS  Google Scholar 

  51. A. Bezold, N. Volz, M. Lenz, C.H. Zenk, E. Spiecker, M. Mills, M. Göken, and S. Neumeier: Scripta Mater., 2021, vol. 200, 113928.

    Article  CAS  Google Scholar 

  52. J. Ruan, W. Xu, T. Yang, J. Yu, S. Yang, J. Luan, and X. Liu: Acta Mater., 2020, vol. 186, pp. 425–33.

    Article  CAS  Google Scholar 

  53. A.J. Goodfellow, E.I. Galindo-Nava, K.A. Christofidou, N.G. Jones, C.D. Boyer, T.L. Martin, and H.J. Stone: Acta Mater., 2018, vol. 153, pp. 290–302.

    Article  CAS  Google Scholar 

  54. R. Labusch: Phys. Status Solidi B, 1970, vol. 41(2), pp. 659–69.

    Article  Google Scholar 

  55. D. Barba, T.M. Smith, J. Miao, M.J. Mills, and R.C. Reed: Metall Mater. Trans. A, 2018, vol. 49(9), pp. 4173–85.

    Article  CAS  Google Scholar 

  56. M. Dodaran, A.H. Ettefagh, S.M. Guo, M.M. Khonsari, W.J. Meng, N. Shamsaei, and S. Shao: Intermetallics, 2020, vol. 117, 106670.

    Article  CAS  Google Scholar 

  57. D.J. Crudden, A. Mottura, N. Warnken, B. Raeisinia, and R.C. Reed: Acta Mater., 2014, vol. 75, pp. 356–70.

    Article  CAS  Google Scholar 

  58. T. Kruml, E. Conforto, B.L. Piccolo, D. Caillard, and J.L. Martin: Acta Mater., 2002, vol. 50(20), pp. 5091–5101.

    Article  CAS  Google Scholar 

  59. T.H. Courtney: Mechanical Behavior of Materials, Waveland Press, Oxford, 2005.

    Google Scholar 

  60. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall Mater. Trans. A, 2009, vol. 40(7), pp. 1588–1603.

    Article  Google Scholar 

  61. Y.K. Kim, D. Kim, H.K. Kim, E.Y. Yoon, Y. Lee, C.S. Oh, and B.J. Lee: Int. J. Plast., 2018, vol. 110, pp. 123–44.

    Article  CAS  Google Scholar 

  62. G.B. Viswanathan, P.M. Sarosi, M.F. Henry, D.D. Whitis, W.W. Milligan, and M.J. Mills: Acta Mater., 2005, vol. 53(10), pp. 3041–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Zhida Liang acknowledges funding by the Helmholtz–Gemeinschaft Deutscher Forschungszentren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhida Liang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Paul, J.D.H., Stark, A. et al. High-Temperature CoNi-Based Superalloys Strengthened by γ′-(Ni,Co)3(Cr,Al,Ti,X): The Effect of Refractory Elements. Metall Mater Trans A 54, 1620–1634 (2023). https://doi.org/10.1007/s11661-022-06795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06795-y

Navigation