Skip to main content

Advertisement

Log in

B/Ti Atomic Ratio and Al Content on Microstructure and Properties of New Neutron Absorbing Austenitic Stainless-Steel Composites

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new type of austenitic stainless-steel composite with different B/Ti atomic ratios and Al contents have been fabricated by in situ synthesis techniques. The effects of the B/Ti atomic ratio and Al content on the microstructure and properties of the composites were investigated. All the designed composites with high B content (2.0 to 2.5 wt pct) had excellent hot workability. The new composite was mainly composed of austenite matrix, long strip-shaped (Fe,Cr)2B boride and a tremendous amount of dispersedly distributed TiB2 particles after hot rolling and annealing. The total elongation and ultimate tensile strength of the composite with a B/Ti atomic ratio of 1.77 were 9.12 pct and 758 MPa, respectively, and this positive result was mainly due to the formation of TiB2 particles avoiding the network distribution of (Fe,Cr)2B boride. The corrosion resistance in boric acid solution and shielding properties were also evaluated, and these austenitic stainless-steel composites are expected to be outstanding materials for neutron absorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.A. Loria and H.S. Isaacs: J. Met., 1980, vol. 32, pp. 10–17.

    CAS  Google Scholar 

  2. S.E. Soliman, D.L. Youchison, A.J. Baratta, and T.A. Balliett: Nucl. Technol., 2017, vol. 96, pp. 346–52.

    Article  Google Scholar 

  3. C.V. Robino and M.J. Cieslak: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1673–85.

    Article  CAS  Google Scholar 

  4. M. Bastürk, J. Arztmann, W. Jerlich, N. Kardjilov, E. Lehmann, and M. Zawisky: J. Nucl. Mater., 2005, vol. 341, pp. 189–200.

    Article  CAS  Google Scholar 

  5. F. Xue, Z.F. Luo, W.W. Yu, Z.X. Wang, and L. Zhang: Adv. Mat. Res., 2011, vol. 197, pp. 1520–23.

    Google Scholar 

  6. J. Do, C. Jeon, C. Paul Kim, B. Lee, S. Lee, E. Lee, T. Shik Yoon, and Y. Su Shin: Mater. Sci. Eng. A, 2012, vol. 556, pp. 366–72.

    Article  CAS  Google Scholar 

  7. J. Do, H. Lee, C. Jeon, D.J. Ha, C.P. Kim, B. Lee, S. Lee, and Y.S. Shin: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2237–50.

    Article  CAS  Google Scholar 

  8. H. Fu, Z. Li, Z. Jiang, and J. Xing: Mater. Lett., 2007, vol. 61, pp. 4504–07.

    Article  CAS  Google Scholar 

  9. G.R. Kumar, G.D.J. Ram, and S.R.K. Rao: Mater. Technol., 2016, vol. 50, pp. 357–64.

    Google Scholar 

  10. C. Guo and P.M. Kelly: Mater. Sci. Eng. A, 2003, vol. 352, pp. 40–45.

    Article  CAS  Google Scholar 

  11. X. Zhou, M. Wang, and H. Zhao: J. Alloys Compd., 2016, vol. 665, pp. 100–06.

    Article  CAS  Google Scholar 

  12. J. Li, Y. Cai, K.R. Narayanan, A. Lucero, A. Pilipetskii, and C.N. Georghiades: J. Lightwave Technol., 2004, vol. 22, pp. 640–46.

    Article  CAS  Google Scholar 

  13. J. Moon, J.H. Jang, S. Kim, T. Lee, H. Ha, C. Lee, and H. Hong: Mater. Charact., 2020, vol. 164, p. 110319.

    Article  CAS  Google Scholar 

  14. Z.J. Wang, Y.W. Li, G.D. Wang, and H.T. Liu: Mater. Sci. Eng. A, 2020, vol. 793, p. 139847.

    Article  CAS  Google Scholar 

  15. A.Y. Churyumov, A.V. Pozdniakov, B. Mondoloni, and A.S. Prosviryakov: Results Phys., 2019, vol. 13, p. 102340.

    Article  Google Scholar 

  16. S. Hahn, S. Isserow, and R. Ray: J. Mater. Sci., 1987, vol. 22, pp. 3395–3401.

    Article  CAS  Google Scholar 

  17. X. Zhou, M. Wang, Y. Fu, Z. Wang, Y. Li, S. Yang, H. Zhao, and H. Li: Mater. Charact., 2017, vol. 124, pp. 182–91.

    Article  CAS  Google Scholar 

  18. J.A. Jiménez, G. González-Doncel, and O.A. Ruano: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1861–67.

    Article  Google Scholar 

  19. Y.W. Li, G.J. Liu, Z.J. Wang, B.G. Zhang, X.M. Zhang, and H.T. Liu: J. Iron Steel Res. Int., 2019, vol. 90, p. 1800491.

    Article  CAS  Google Scholar 

  20. J. Liu, K. Zhang, and G.L. Xie: Adv. Mat. Res., 2012, vol. 535–537, pp. 883–87.

    Google Scholar 

  21. H. Fu, Q. Xiao, J. Kuang, Z. Jiang, and J. Xing: Mater. Sci. Eng. A, 2007, vol. 466, pp. 160–65.

    Article  CAS  Google Scholar 

  22. Z.l. Liu, X. Chen, Y.X. Li and K.H. Hu: J. Iron Steel Res. Int., 2009, vol. 16, pp. 37–42,54

  23. X. Yong, C. Zhiguo, W. Xiang, and W. Zhongjia: Rare Met. Mat. Eng., 2015, vol. 44, pp. 1335–39.

    Article  Google Scholar 

  24. S. Ma, J. Xing, H. Fu, Y. Gao, and J. Zhang: Acta Mater., 2012, vol. 60, pp. 831–43.

    Article  CAS  Google Scholar 

  25. G.B. Raju and B. Basu: Key Eng. Mater., 2008, vol. 395, pp. 89–124.

    Article  Google Scholar 

  26. Y. Liu, B.H. Li, J. Li, L. He, S.J. Gao, and T.G. Nieh: Mater. Lett., 2010, vol. 64, pp. 1299–301.

    Article  CAS  Google Scholar 

  27. X. Zheng, Y. Liu, and J. Li: Int. J. Mater. Prod. Technol., 2015, vol. 51, pp. 332–44.

    Article  Google Scholar 

  28. G. Xu, K. Wang, X. Dong, L. Yang, H. Jiang, Q. Wang, and W. Ding: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4610–22.

    Article  CAS  Google Scholar 

  29. A. Prosviryakov, B. Mondoloni, A. Churyumov, and A. Pozdniakov: Metals, 2019, vol. 9, p. 218.

    Article  CAS  Google Scholar 

  30. J. Pan, Z. Wang, L. Yang, Q. Mei, Q. Ding, Z. Wu, and X. Xiao: Mater. Charact., 2021, vol. 181, p. 111446.

    Article  CAS  Google Scholar 

  31. N. Kokan: Trans. Iron Steel Inst. Jpn., 1988, vol. 28, p. 600.

    Article  Google Scholar 

  32. P. Cizek, B.A. Parker, M. Bijok, and P. Zuna: ISIJ Int., 1994, vol. 34, pp. 679–88.

    Article  CAS  Google Scholar 

  33. GB/T 228.1-2010, Standardization Administration of China, People's Republic of China, 2010.

  34. Q. Wang, Y. Li, S. Chen, X. Liu, Z. Chen, M. Wang, H. Zhu, and H. Wang: J. Phys. Chem. C, 2021, vol. 125, pp. 5937–46.

    Article  CAS  Google Scholar 

  35. S. Ma, W. Pan, J. Xing, S. Guo, H. Fu, and P. Lyu: Mater. Charact., 2017, vol. 132, pp. 1–9.

    Article  CAS  Google Scholar 

  36. X. Ren, H. Fu, J. Xing, and S. Tang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5636–45.

    Article  CAS  Google Scholar 

  37. Y.J. Li, Q.C. Jiang, Y.G. Zhao, and Z.M. He: Scr. Mater., 1997, vol. 37, pp. 173–77.

    Article  CAS  Google Scholar 

  38. Z.J. Wang, Y.W. Li, W.N. Zhang, G.D. Wang, and H.T. Liu: Mater. Sci. Eng. A, 2021, vol. 811, p. 141067.

    Article  CAS  Google Scholar 

  39. L.L. Yuan, J.T. Han, and J. Liu: Adv. Mat. Res., 2014, vol. 941–944, pp. 226–31.

    Google Scholar 

  40. S. Ma, J. Xing, G. Liu, D. Yi, H. Fu, J. Zhang, and Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6800–808.

    Article  CAS  Google Scholar 

  41. J. Lentz, A. Röttger, F. Großwendt, and W. Theisen: Mater. Des., 2018, vol. 156, pp. 113–24.

    Article  CAS  Google Scholar 

  42. A. Röttger, J. Lentz, and W. Theisen: Mater. Des., 2015, vol. 88, pp. 420–29.

    Article  CAS  Google Scholar 

  43. M. ZiemnickaSylwester, L. Gai, and S. Miura: Mater. Des., 2015, vol. 69, pp. 1–1.

    Article  CAS  Google Scholar 

  44. V. Raghavan: J. Phase Equilib., 2003, vol. 24, pp. 455–56.

    Article  CAS  Google Scholar 

  45. D. Ye and J. Hu: Handbook of Practical Inorganic Thermodynamic Data, Metallurgical Industry Press, Beijing, 2002.

    Google Scholar 

  46. Y. Li, H. Liu, Z. Wang, Z. Zhang, and W. Li: Rare Met., 2019, vol. 39, pp. 1483–91.

    Article  CAS  Google Scholar 

  47. C.H. Chen, Y. Bai, W. Chen, and X.C. Ye: Appl. Mech. Mater., 2013, vol. 395–396, pp. 251–58.

    Google Scholar 

  48. J. Diabb, A. JuárezHernandez, R. Colas, A.G. Castillo, E. GarcíaSanchez, and M.A.L. HernandezRodriguez: Wear, 2009, vol. 267, pp. 550–55.

    Article  CAS  Google Scholar 

  49. B. Wang, H. Yi, and G. Wang: Acta Metall. Sin., 2019, vol. 55, pp. 133–40.

    CAS  Google Scholar 

  50. B.G. Wang, G.D. Wang, R.D.K. Misra, and H.L. Yi: Mater. Sci. Eng. A, 2021, vol. 812, 141100.

    Article  CAS  Google Scholar 

  51. A. Ma and M. Jiang: Ceramics, 2006, pp. 19–21

  52. Y.W. Li, Z.J. Wang, D.G. Fu, G. Li, H.T. Liu, and X.M. Zhang: Mater. Sci. Eng. A, 2021, vol. 799, p. 140212.

    Article  CAS  Google Scholar 

  53. C.H. Won, J.H. Jang, S.D. Kim, J. Moon, and H.Y. Ha: J. Nucl. Mater., 2019, vol. 515, pp. 206–14.

    Article  CAS  Google Scholar 

  54. L. He, Y. Liu, J. Li, and B. Li: Mater. Des., 2012, vol. 36, pp. 88–93.

    Article  CAS  Google Scholar 

  55. S. Hahn, S. lssrow, and R. Ray: J. Mater. Sci., 1985, vol. 4, pp. 972–75.

    CAS  Google Scholar 

  56. H.B.M. Rajan, I. Dinaharan, S. Ramabalan, and E.T. Akinlabi: J. Alloys Compd., 2016, vol. 657, pp. 250–60.

    Article  CAS  Google Scholar 

  57. Z. HadjemHamouche, K. Derrien, E. Héripré, and J.P. Chevalier: Mater. Sci. Eng. A, 2018, vol. 724, pp. 594–605.

    Article  CAS  Google Scholar 

  58. M.X. Huang, B.B. He, X. Wang, and H.L. Yi: Scr. Mater., 2015, vol. 99, pp. 13–16.

    Article  CAS  Google Scholar 

  59. Y.Z. Li, Z.C. Luo, H.L. Yi, and M.X. Huang: Metall. Mater. Trans. E, 2016, vol. 3, pp. 203–08.

    Google Scholar 

  60. Z. Hadjem-Hamouche, J.-P. Chevalier, Y. Cui, and F. Bonnet: J. Iron Steel Res. Int., 2012, vol. 83, pp. 538–45.

    Article  CAS  Google Scholar 

  61. S. Hafez, S. ElKameesy, M. Eissa, R. Elshazly, M. Elfawkhry, and A. Saed: Arab. J. Nucl. Sci. Appl., 2019, vol. 52, pp. 36–44.

    Google Scholar 

  62. S. Hafez, R. Elshazly, M.M. Eissa, and S. El-Kameesy: Arab. J. Nucl. Sci. Appl., 2021, vol. 54, pp. 97–104.

    Google Scholar 

  63. R. Sharma, A.K. Singh, A. Arora, S. Pati, and P.S. De: T. Nonferrous Met. Soc., 2019, vol. 29, pp. 1383–92.

    Article  CAS  Google Scholar 

  64. H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, and Q.C. Wu: J. Alloys Compd., 2015, vol. 632, pp. 23–29.

    Article  CAS  Google Scholar 

  65. P. Zhang, Y. Li, W. Wang, Z. Gao, and B. Wang: J. Nucl. Mater., 2013, vol. 437, pp. 350–58.

    Article  CAS  Google Scholar 

  66. H. Mutuk, T. Mutuk, H. Gümüş, and B. Mesci Oktay: Acta Phys. Pol. A, 2016, vol. 130, pp. 172–74.

    Article  CAS  Google Scholar 

  67. Z.G. Xu, L.T. Jiang, Q. Zhang, J. Qiao, D. Gong, and G.H. Wu: Mater. Des., 2016, vol. 111, pp. 375–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Huang Rong and Zhao YaWei for the test work, and Shi Yang for the guidance in the schematic diagram. This work was sponsored by the Science and Technology Plan Project of Sichuan Province under Contract No. 2021YJ0058.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Shan Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Wang, CD., Tao, YH. et al. B/Ti Atomic Ratio and Al Content on Microstructure and Properties of New Neutron Absorbing Austenitic Stainless-Steel Composites. Metall Mater Trans A 53, 3774–3794 (2022). https://doi.org/10.1007/s11661-022-06785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06785-0

Navigation