Skip to main content
Log in

Effects of Titanium Addition on the Microstructural and Mechanical Property Evolution of FeCrB Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of Ti addition on the microstructural and mechanical property evolution of FeCrB alloys have been systematically studied through experiments and modeling. Microstructural analysis reveals that Ti addition can induce the formation of in situ nanoparticles which can be mainly divided into two categories based on their distribution types. The first are the interfacial ones accumulating on the boride surface to control their growth, while the second are the intragranular ones distributed in the matrix to reinforce the FeCrB alloys. Model predictions show that the nanoparticle-induced growth restriction is responsible for the microstructural refinement. The refined microstructure and reinforcing nanoparticles can lead to the enhanced mechanical properties of FeCrB alloys. When the Ti addition reaches 1.4 wt pct, the FeCrB alloy exhibits the most refined and homogeneous microstructure and thus the optimal performance with its microhardness, macrohardness, ultimate tensile strength, elongation, impact toughness, and the wear-resistant performance are increased by 31.9, 29.0, 39.7, 128.6, 27.3, and 350 pct, respectively, compared with the base alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] J. Xu, M.A. Bright, X.B. Liu and E. Barbero: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2727-36.

    CAS  Google Scholar 

  2. [2] K. Zhang: Wear, 2003, vol. 255, pp. 545-555.

    CAS  Google Scholar 

  3. [3] R.F. Yang, P. Zhang and J.H. Wu: Mater. Sci. Eng. A, 2009, vol. 499, pp. 134-137.

    Google Scholar 

  4. [4] X.M. Zhang and W.P. Chen: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1715-31.

    CAS  Google Scholar 

  5. [5] L.F. Hou, Y.H. Wei, Y.G. Li, B.S. Liu, H.Y. Du and C.L. Guo: Eng. Failure Anal., 2013, vol. 33, pp. 457-464.

    CAS  Google Scholar 

  6. [6] B.S. Liu, Y.G. Wei, H.M. Li and L.F. Hou: Eng. Failure Anal., 2014, vol. 39, pp. 200-206.

    CAS  Google Scholar 

  7. [7] E. Yamaki, K. Ginestar and L. Martinelli: Corros. Sci., 2011, vol. 53, pp. 3075-85.

    CAS  Google Scholar 

  8. [8] J. Zhang, P. Hosemann and S. Maloy: J. Nucl. Mater., 2010, vol. 404, pp. 82-96.

    CAS  Google Scholar 

  9. [9] J. Song, X.M. Wang, T. DenOuden and Q.Y. Han: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2609-15.

    Google Scholar 

  10. [10] A.E. Miller and D.M. Maijer: Mater. Sci. Eng. A, 2006, vol. 435, pp. 100-111.

    Google Scholar 

  11. [11] G.H. Awan and F.U. Hasan: Mater. Sci. Eng. A, 2008, vol. 472, pp. 157-165.

    Google Scholar 

  12. [12] G.K. Mandal, R. Balasubramaniam and S.P. Mehrotra: Metall. Mater. Trans. A, 2009, vol. 40, pp. 637-645.

    CAS  Google Scholar 

  13. [13] Y. Wang, J.D. Xing, H.G. Fu, Y.Z. Liu, K.H. Zheng, S.Q. Ma and Y.X. Jian: Corros. Sci., 2018, vol. 131, pp. 290-299.

    CAS  Google Scholar 

  14. [14] Y. Wang, J.D. Xing, S.Q. Ma, B.C. Zheng, H.G. Fu and G.Z. Liu: Corros. Sci., 2016, vol. 112, pp. 25-35.

    CAS  Google Scholar 

  15. [15] G.Z. Liu, J.D. Xing, S.Q. Ma, Y.L. He, H.G. Fu, Y. Gao, Y. Wang and Y.R. Wang: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1900-07.

    Google Scholar 

  16. [16] Z.C. Ling, W.P. Chen, T.W. Lu, B. Li and X.M. Zhang: Wear, 2019, vol. 430, pp. 81-93.

    Google Scholar 

  17. [17] X.M. Zhang, W.P. Chen and H.F. Luo: Tribol. Lett., 2018, vol. 66, pp. 112.

    Google Scholar 

  18. [18] S.Q. Ma, J.D. Xing, H.G. Fu, Y.M. Gao and J.J. Zhang: Acta Mater., 2012, vol. 60, pp. 831-843.

    CAS  Google Scholar 

  19. [19] C. Baron, H. Springer and D. Raabe: Mater. Sci. Eng. A, 2018, vol. 724, pp. 142-147.

    CAS  Google Scholar 

  20. [20] C. Baron, H. Springer and D. Raabe: Mater. Des., 2016, vol. 112, pp. 131-139.

    CAS  Google Scholar 

  21. [21] S.Q. Ma, J.D. Xing, G.F. Liu, D.W. Yi, H.G. Fu, J.J. Zhang and Y.F. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6800-08.

    Google Scholar 

  22. [22] Y.X. Jian, Z.F. Huang, J.D. Xing and Y.M. Gao: J. mater. Sci., 2018, vol. 53, pp. 5329-38.

    CAS  Google Scholar 

  23. [23] J.J. Zhang, Y.M. Gao, J.D. Xing, S.Q. Ma, D.W. Yi and J.B. Yan: Tribol. Lett., 2011, vol. 44, pp. 31.

    Google Scholar 

  24. [24] J. Lentz, A. Röttger, F. Großwendt and W. Theisen: Mater. Des., 2018, vol. 156, pp. 113-124.

    CAS  Google Scholar 

  25. [25] Z.F. Huang, J.D. Xing and L. Lv: Mater. Charact., 2013, vol. 75, pp. 63-68.

    CAS  Google Scholar 

  26. [26] Z.F. Huang, L. Chang, Z.W. Liu and Q.L. Zhang: Int. J. Mater. Res., 2017, vol. 108, pp. 424-426.

    CAS  Google Scholar 

  27. [27] Y.X. Jian, Z.F. Huang, J.D. Xing and X.Z. Guo: J. Mater. Res., 2017, vol. 32, pp. 1718-26.

    CAS  Google Scholar 

  28. [28] Y.X. Jian, Z.F. Huang, J.D. Xing, X.Z. Guo, Y. Wang and Z. Lv: Tribol. Lett., 2016, vol. 103, pp. 243-251.

    CAS  Google Scholar 

  29. [29] B. Kowalczyk, K.J.M. Bishop, I. Lagzi, D.W. Wang, Y.H. Wei, S.B. Han and B. Grzybowski: Nat. Mater., 2012, vol. 11, pp. 227–32.

    CAS  Google Scholar 

  30. [30] L.Y. Chen, J.Q. Xu, H. Choi, H. Konishi, S. Jin and X.C. Li: Nat. commun., 2014, vol. 5, pp. 1–9.

    Google Scholar 

  31. [31] L.Y. Chen, J.Q. Xu and X.C. Li: Mater. Res. Lett., 2015, vol. 3, pp. 43-49.

    Google Scholar 

  32. [32] E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A.B. Phillion, T. Jing, W.Z. Li and P.D. Lee: Acta Mater., 2018, vol. 152, pp. 127-137.

    CAS  Google Scholar 

  33. [33] K. Wang, H.Y. Jiang, Y.W. Jia, H. Zhou, Q.D. Wang, B. Ye and W.J. Ding: Acta Mater., 2016, vol. 103, pp. 252-263.

    CAS  Google Scholar 

  34. [34] K. Wang, H.Y. Jiang, Q.D. Wang, B. Ye and W.J. Ding: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4788-94.

    Google Scholar 

  35. [35] Y. Liu, B.H. Li, J. Li, L. He, S.J. Gao and T.G. Nieh: Mater. Lett., 2010, vol. 64, pp. 1299-1301.

    CAS  Google Scholar 

  36. [36] B.H. Li, Y. Liu, J. Li and L. He: J. Mater. Process. Technol., 2010, vol. 210, pp. 91-95.

    CAS  Google Scholar 

  37. [37] Y.F. Yang and Q.C. Jiang: Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 137-139.

    CAS  Google Scholar 

  38. [38] D. Wang, P. Shanthraj, H. Springer and D. Raabe: Mater. Des., 2018, vol. 160, pp. 557-571.

    CAS  Google Scholar 

  39. [39] R. Aparicio-Fernández, H. Springer, A. Szczepaniak, H. Zhang and D. Raabe: Acta Mater., 2016, vol. 107, pp. 38-48.

    Google Scholar 

  40. [40] L. Zhong, Y.H. Xu, M. Hojamberdiev, J.B. Wang and J. Wang: Mater. Des., 2011, vol. 32, pp. 3790-95.

    CAS  Google Scholar 

  41. [41] G.P. Xu, K. Wang, X.P. Dong, H.Y. Jiang, Q.D. Wang, B. Ye and W.J. Ding: Corros. Sci., 2020, vol. 163, 108276.

    Google Scholar 

  42. [42] P. Villars and L.O. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, OH, USA, 1985.

    Google Scholar 

  43. [43] B. Bramfitt: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1987-95.

    Google Scholar 

  44. [44] H. Men and Z. Fan: Acta Mater., 2011, vol. 59, pp. 2704–12.

    CAS  Google Scholar 

  45. [45] M. Kumar, R. Sasikumar and P.K. Nair: Acta Mater., 1998, vol. 46, pp. 6291–6303.

    CAS  Google Scholar 

  46. [46] M. Qian, P. Cao, M.A. Easton, S.D. McDonald and D.H. StJohn: Acta Mater., 2010, vol. 58, pp. 3262–70.

    CAS  Google Scholar 

  47. [47] Z. Fan, F. Gao, L. Zhou and S.Z. Lu: Acta Mater., 2018, vol. 152, pp. 248-257.

    CAS  Google Scholar 

  48. [48] I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229-237.

    CAS  Google Scholar 

  49. [49] C. Zener: J. appl. Phys., 1949, vol. 20, pp. 950-953.

    CAS  Google Scholar 

  50. [50] W. Yang, F. Liu, G.C. Yang, Z.F. Xu, J.H. Wang and Z.T. Wang: Thermochim. Acta, 2012, vol. 527, pp. 47-51.

    CAS  Google Scholar 

  51. [51] H. Baker: ASM handbook: alloy phase diagrams, ASM international, OH, USA, 1992, pp. 281.

    Google Scholar 

  52. Benxi Iron & Steel Co. (1977) Boron Steel. Metallurgical Industry Press, Beijing, pp. 2.

    Google Scholar 

  53. [53] N. Bizmark, M.A. Ioannidis and D.E. Henneke: Langmuir, 2014, vol. 30, pp. 710-717.

    CAS  Google Scholar 

  54. [54] K. Wang, H.Y. Jiang, Y.X. Wang, Q.D. Wang, B. Ye and W.J. Ding: Mater. Des., 2016, vol. 95, pp. 545-554.

    CAS  Google Scholar 

  55. [55] N. Yüksel and S. Şahin: Mater. Des., 2014, vol. 58, pp. 491-498.

    Google Scholar 

Download references

Acknowledgments

The present study was sponsored by the National Natural Science Foundation of China, People’s Republic of China (NSFC) under Grant no. 51804197, Grant No. 51674166 and U1902220. Startup Fund for Youngman Research at SJTU (SFYR at SJTU).

Data Availability Statement

All data included in this study are available upon request by contact with the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 6, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Wang, K., Dong, X. et al. Effects of Titanium Addition on the Microstructural and Mechanical Property Evolution of FeCrB Alloys. Metall Mater Trans A 51, 4610–4622 (2020). https://doi.org/10.1007/s11661-020-05899-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05899-7

Navigation