Skip to main content
Log in

Production and Characterization of a Modified Hot Work Tool Steel by Laser Powder Bed Fusion

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Conventional hot work tool steels with medium carbon content, fabricated by laser powder bed fusion (L-PBF), are susceptible to cracking. To reduce this risk, as in well-established welding process, usually preheating or in-situ heating needs to be applied. In order to address this issue, a modified grade, with lower carbon wt pct, is proposed to fabricate parts showing less susceptibility to cracking. The microstructure was studied in the as-built condition and after direct double tempering for 2 hours each at 625 °C and 650 °C. Tensile properties and hardness were compared with those of wrought and (L-PBF) processed AISI H13. The results confirm improved printing performance of the new steel grade and the possibility of achieving similar hardness and strength by proper tempering treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Haghdadi, M. Laleh, M. Moyle, and S. Primig: J Mater Sci., 2021, vol. 56, pp. 64–107.

    Article  CAS  Google Scholar 

  2. S. Ford and M. Despeisse: J. Clean. Prod., 2016, vol. 137, pp. 1573–87.

    Article  Google Scholar 

  3. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle: Mater. Sci. Eng. A., 2020, vol. 772, p. 138633.

    Article  CAS  Google Scholar 

  4. T. Skaare and N. Asnafi: IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 967, p. 012040.

    Article  Google Scholar 

  5. M. Pellizzari, B. AlMangour, M. Benedetti, S. Furlani, D. Grzesiak, and F. Deirmina: Theoret. Appl. Fract. Mech., 2020, vol. 108, pp. 102634–39.

    Article  CAS  Google Scholar 

  6. M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, and P. Krakhmalev: Mater. Sci. Eng. A., 2019, vol. 742, pp. 584–89.

    Article  Google Scholar 

  7. J. Sjöström and J. Bergström: J. Mater. Process. Technol., 2004, vol. 153–154, pp. 1089–96.

    Article  Google Scholar 

  8. J.J. Yan, D.L. Zheng, H.X. Li, X. Jia, J.F. Sun, Y.L. Li, M. Qian, and M. Yan: J. Mater. Sci., 2017, vol. 52, pp. 12476–85.

    Article  CAS  Google Scholar 

  9. D. Deng: Mater. Des., 2009, vol. 30, pp. 359–66.

    Article  CAS  Google Scholar 

  10. H. Murakawa, M. Béreš, C.M. Davies, S. Rashed, A. Vega, M. Tsunori, K.M. Nikbin, and D. Dye: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 393–99.

    Article  CAS  Google Scholar 

  11. J.A. Francis, H.J. Stone, S. Kundu, H.K.D.H. Bhadeshia, R.B. Rogge, P.J. Withers, and L. Karlsson: J. Pressure Vessel Technol., 2009, vol. 131, pp. 041401-041401–8.

    Article  Google Scholar 

  12. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.-P. Kruth, and J. Van Humbeeck: Phys. Proc., 2016, vol. 83, pp. 882–90.

    Article  CAS  Google Scholar 

  13. J. Krell, A. Röttger, K. Geenen, and W. Theisen: J. Mater. Process. Technol., 2018, vol. 255, pp. 679–88.

    Article  CAS  Google Scholar 

  14. D. Barbier: Adv. Eng. Mater., 2014, vol. 16, pp. 122–27.

    Article  CAS  Google Scholar 

  15. N. Yurioka: ISIJ Int., 2001, vol. 41, pp. 566–70.

    Article  CAS  Google Scholar 

  16. J.C. Ion, K.E. Easterling, and M.F. Ashby: Acta Metall., 1984, vol. 32, pp. 1949–62.

    Article  CAS  Google Scholar 

  17. H. Berns and F. Wendl: Steel Res., 1986, vol. 57, pp. 671–76.

    Article  CAS  Google Scholar 

  18. L.-Å. Norström, M. Svensson, and N. Öhrberg: Met. Technol., 1981, vol. 8, pp. 376–81.

    Article  Google Scholar 

  19. R. Rodríguez-Baracaldo, J.A. Benito, E.S. Puchi-Cabrera, and M.H. Staia: Wear., 2007, vol. 262, pp. 380–89.

    Article  Google Scholar 

  20. F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, and M. Pellizzari: Mater. Sci. Eng. A., 2019, vol. 753, pp. 109–21.

    Article  CAS  Google Scholar 

  21. C.-Y. Chou, N.H. Pettersson, A. Durga, F. Zhang, C. Oikonomou, A. Borgenstam, J. Odqvist, and G. Lindwall: Acta Mater., 2021, vol. 2021, p. 117044.

    Article  Google Scholar 

  22. E.A. Jägle, P.-P. Choi, J.V. Humbeeck, and D. Raabe: J. Mater. Res., 2014, vol. 29, pp. 2072–79.

    Article  Google Scholar 

  23. S. Amirabdollahian, F. Deirmina, M. Pellizzari, P. Bosetti, and A. Molinari: Mater. Sci. Eng. A., 2021, vol. 814, p. 141126.

    Article  CAS  Google Scholar 

  24. Y. Zhang, P. Lai, H. Jia, X. Ju, and G. Cui: Metals., 2019, https://doi.org/10.3390/met9010094.

    Article  Google Scholar 

  25. G. Carasi, B. Yu, E. Hutten, H. Zurob, R. Casati, and M. Vedani: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 2564–75.

    Article  Google Scholar 

  26. Y.-Z. Zhao, Y.-H. Zhao, Q. Li, S.-L. Chen, J.-Y. Zhang, and K.-C. Chou: Intermetallics., 2009, vol. 17, pp. 491–95.

    Article  CAS  Google Scholar 

  27. C. Xia and S. Kou: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 460–69.

    Article  Google Scholar 

  28. A. Eser, C. Broeckmann, and C. Simsir: Comput. Mater. Sci., 2016, vol. 113, pp. 280–91.

    Article  CAS  Google Scholar 

  29. F. Deirmina and M. Pellizzari: Mater. Sci. Eng. A., 2019, vol. 743, pp. 349–60.

    Article  CAS  Google Scholar 

  30. Development of hot-work tool steel for high-temperature applications: Metals Technol., 2020, https://doi.org/10.1179/030716981803275857.

    Article  Google Scholar 

  31. https://www.uddeholm.com/files/PB_orvar_supreme_english.pdf

  32. T. Okuno: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 51–59.

    Article  Google Scholar 

  33. G. Telasang, J.D. Majumdar, G. Padmanabham, and I. Manna: Mater. Sci. Eng. A., 2014, vol. 599, pp. 255–67.

    Article  CAS  Google Scholar 

  34. J. Yan, H. Song, Y. Dong, W.-M. Quach, and M. Yan: Mater. Sci. Eng. A., 2020, vol. 773, pp. 138845–49.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Davies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deirmina, F., Davies, P.A., Dixit, N. et al. Production and Characterization of a Modified Hot Work Tool Steel by Laser Powder Bed Fusion. Metall Mater Trans A 53, 2642–2651 (2022). https://doi.org/10.1007/s11661-022-06694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06694-2

Navigation