Skip to main content
Log in

Thin Strip vs Direct Chill Casting: The Effects of Casting Cooling Rate on the As-cast Microstructure of AA6005 Al–Si–Mg Alloy

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum AA6005 sheet produced by Thin Strip (TS) casting was compared to the slabs produced by Direct Chill casting in the as-cast state. Higher cooling rates experienced before, during, and after the solidification for the TS cast sheet showed a finer grain size, smaller secondary dendritic arm spacing, improved solute supersaturation, and a lack of \(\hbox {Mg}_{{2}}\)Si constituents at the grain boundary. These findings showed the effects of cooling rate in the casting process on the as-cast microstructure and provided a basis for further heat-treatment optimization of the TS cast sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. J.T. Stanley and R.E.J. Sanders: Handbook of Aluminum: Alloy Production and Materials Manufacturing, vol. 2, Marcel Dekker, Inc., New York, 2003, pp. 319–42.

    Book  Google Scholar 

  2. W.T. Choate and J.A.S. Green: U.S. Energy Requirements for Aluminum Production: Historical Perspective, Theoretical Limits and New Opportunities, U.S. Department of Energy, 2007, pp. 113–16.

  3. Hazelett Strip Casting Corporation: Internal Report, Hazelett Strip Casting Corporation, Colchester, 2017.

    Google Scholar 

  4. T. Dorin, A. Vahid, and J. Lamb: Fundamentals of Aluminum Metallurgy: Recent Advances, Elsevier, Kidlington, 2018, pp. 418–19.

    Google Scholar 

  5. V. Fallah, D.J. Lloyd, and M. Gallerneault: Mater. Sci. Eng. A, 2017, vol. 698, pp. 88–97.

    Article  CAS  Google Scholar 

  6. H. Qin, V. Fallah, Q. Dong, M. Brochu, M.R. Daymond, and M. Gallerneault: Mater. Charact., 2018, vol. 145, pp. 29–38.

    Article  CAS  Google Scholar 

  7. H. Qin, Q. Dong, V. Fallah, and M.R. Daymond: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 448–66.

    Article  Google Scholar 

  8. Q. Dong, A. Howells, D.J. Lloyd, M. Gallerneault, and V. Fallah: Mater. Sci. Eng. A, 2020, vol. 772, p. 138693.

    Article  CAS  Google Scholar 

  9. Y.S. Park, S.B. Lee, and N.J. Kim: Mater. Trans., 2003, vol. 44, pp. 2617–24.

    Article  CAS  Google Scholar 

  10. Y. Birol: Mater. Sci. Eng. A, 2005, vol. 391, pp. 175–80.

    Article  Google Scholar 

  11. K. Suzuki, S. Kumai, Y. Saito, and T. Haga: Mater. Trans., 2005, vol. 46, pp. 2602–08.

    Article  CAS  Google Scholar 

  12. A. Baserinia, E. Caron, M. Wells, D. Weckman, S. Barker, and M. Gallerneault: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1017–29.

    Article  Google Scholar 

  13. P.L. Schaffer and A.K. Dahle: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 373–78.

    Article  Google Scholar 

  14. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Bach, 1998.

    Book  Google Scholar 

  15. V. Rontó and A. Roósz: Int. J. Cast Met. Res., 2001, vol. 14, pp. 131–35.

    Article  Google Scholar 

  16. C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, and A. Garcia: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3342–55.

    Article  Google Scholar 

  17. C. Brito, H. Nguyen-Thi, N. Mangelinck-Noël, N. Cheung, J.E. Spinelli, and A. Garcia: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 529, p. 012018.

    Article  CAS  Google Scholar 

  18. N.C.W. Kuijpers, F.J. Vermolen, K. Vuik, and S. van der Zwaag: Mater. Trans., 2003, vol. 44, pp. 1448–56.

    Article  CAS  Google Scholar 

  19. P. Priya, D.R. Johnson, and M.J.M. Krane: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 4625–39.

    Article  Google Scholar 

  20. S. Kumar, P.S. Grant, and K.A.Q. O’Reilly: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3000–14.

    Article  Google Scholar 

  21. N. Bayat, T. Carlberg, and M. Cieslar: J. Alloys Compd., 2017, vol. 725, pp. 504–09.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Hazelett CASTechnology for financial and technical support for materials processing via casting, rolling and heat treatments. We would like to acknowledge the financial support from the Mitacs Accelerate Program, Grant No. IT17218, which was essential for the accomplishment of the Project objectives.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengze Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Howells, A., Lloyd, D.J. et al. Thin Strip vs Direct Chill Casting: The Effects of Casting Cooling Rate on the As-cast Microstructure of AA6005 Al–Si–Mg Alloy. Metall Mater Trans A 53, 1928–1933 (2022). https://doi.org/10.1007/s11661-022-06675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06675-5

Navigation