Skip to main content
Log in

Microstructure and Crystallography of a Carbide-Free Bainite Steel Under the Effect of Stress

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress-affected bainite transformations were conducted on a Gleeble 3800 simulator, and the effects of different stress states (compressive, tensile, elastic, and plastic stresses) on the microstructural evolution and crystallography of a carbide-free bainite steel were investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), and electron backscattering diffraction (EBSD). The results show that both compressive and tensile elastic stresses increase the thickness of bainite plates due to the additional mechanical driving force induced by the applied stress, and there is no significant difference between the effects of the two types of stress. Although prior deformation was reported to refine the bainite plates, the plastic stress, which induced prior deformation, coarsens the bainite plates because the effect of mechanical driving is more significant. The size of blocky martensite is refined and the length of bainite sheaves increases under the effect of stress, while the size of blocky RA is almost unaffected. In addition, EBSD results show that the orientation relationship between austenite and bainite ferrite is closer to the Nishiyama–Wassermann (N–W) relationship than to the Kurdjumov–Sachs (K–S) relationship for the stress-affected specimens. Strong variant selection occurs when a stress is applied during bainite transformation. Moreover, the elastic stress slightly decreases the hardness, while the plastic stress increased the hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid. State Mater., 2004, vol. 8, pp. 251–57.

    Article  CAS  Google Scholar 

  2. X.X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, G.R. Purdy, and H.S. Zurob: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1352–61.

    Article  Google Scholar 

  3. H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu: Mater. Des., 2015, vol. 84, pp. 95–99.

    Article  CAS  Google Scholar 

  4. H.D. Wu, G. Miyamoto, Z.G. Yang, C. Zhang, H. Chen, and T. Furuhara: Acta Mater., 2017, vol. 133, pp. 1–9.

    Article  Google Scholar 

  5. P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1995, vol. 201, pp. 143–49.

    Article  Google Scholar 

  6. K. Hase, C. Garcia-Mateo, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 1499–1505.

    Article  CAS  Google Scholar 

  7. M.C. Uslu, D. Canadinc, H.-G. Lambers, S. Tschumak, and H.J. Maier: Model. Simul. Mater. Sci. Eng., 2011, vol. 19, pp. 45007–23.

    Article  Google Scholar 

  8. M.J. Holzweissig, D. Canadinc, and H.J. Maier: Mater. Charact., 2012, vol. 65, pp. 100–08.

    Article  CAS  Google Scholar 

  9. C.C. Liu, K.F. Yao, and Z. Liu: Mater. Sci. Technol., 2000, vol. 16, pp. 643–47.

    Article  CAS  Google Scholar 

  10. M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Steel Res. Int., 2017, vol. 88, p. 1600377.

    Article  Google Scholar 

  11. M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Mater. Sci. Eng. A., 2017, vol. 704, pp. 427–33.

    Article  CAS  Google Scholar 

  12. C.C. Liu, D.Y. Ju, K.F. Yao, Z. Liu, and X.J. Xu: Mater. Sci. Technol., 2001, vol. 17, pp. 1229–37.

    Article  CAS  Google Scholar 

  13. M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, and J.Y. Tian: Met. Mater. Int., 2018, vol. 4, pp. 28–34.

    Article  Google Scholar 

  14. T.J. Su, E. Aeby-Gautier, and S. Denis: Scripta Mater., 2006, vol. 54, pp. 2185–89.

    Article  CAS  Google Scholar 

  15. S.B. Zhang and W.J. Li: Adv. Mater. Res., 2001, vol. 194–196, pp. 341–46.

    Google Scholar 

  16. H. Beladi, V. Tari, I.B. Timokhina, P. Cizek, G.S. Rohrer, A.D. Rollett, and P.D. Hodgson: Acta Mater., 2017, vol. 127, pp. 426–37.

    Article  CAS  Google Scholar 

  17. V. Tari, A.D. Rollett, and H. Beladi: J. Appl. Crystallogr., 2013, vol. 46, pp. 210–15.

    Article  CAS  Google Scholar 

  18. T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 1003–13.

    Article  CAS  Google Scholar 

  19. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.

    Article  CAS  Google Scholar 

  20. V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, and N.B. Ballal: Acta Mater., 2008, vol. 56, pp. 2037–50.

    Article  CAS  Google Scholar 

  21. J.Y. Tian, G. Xu, Z.Y. Jiang, Q. Yuan, G.H. Chen, and H.J. Hu: Mater. Sci. Technol., 2019, vol. 35, pp. 1539–50.

    Article  CAS  Google Scholar 

  22. Y.S. Wu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: Mater. Sci. Eng. A., 2019, vol. 768, p. 138454.

    Article  CAS  Google Scholar 

  23. Y.S. Wu, Z. Liu, X.Z. Qin, C.S. Wang, and L.Z. Zhou: J. Alloys Compd., 2019, vol. 795, pp. 370–84.

    Article  CAS  Google Scholar 

  24. H.K.D.H. Bhadeshia: Bainite in Steels, 3rd ed. Institute of Materials, Minerals & Mining, London, 2015, pp. 21–23.

    Google Scholar 

  25. M. Azuma, N. Fujita, M. Takahashi, T. Senuma, D. Quidort, and T. Lung: ISIJ Int., 2004, vol. 45, pp. 1405–12.

    Google Scholar 

  26. S.B. Singh and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1998, vol. 245, pp. 72–79.

    Article  Google Scholar 

  27. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.

    Article  CAS  Google Scholar 

  28. Materials Algorithms Project (MAP), University of Cambridge, Cambridge, UK, 2015. http://www.msm.cam.ac.uk/map/.

  29. K. Maryam, A. Behzad, and Y. Sasan: Mater. Chem. Phys., 2016, vol. 184, pp. 306–17.

    Article  Google Scholar 

  30. W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang: Acta Mater., 2013, vol. 61, pp. 4142–54.

    Article  CAS  Google Scholar 

  31. H.J. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A., 2015, vol. 626, pp. 34–40.

    Article  CAS  Google Scholar 

  32. H.K.D.H. Bhadeshia: Mater. Sci. Eng. A., 1999, vol. 273–275, pp. 58–66.

    Article  Google Scholar 

  33. H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, and Y. Minamino: Mater. Charact., 2005, vol. 54, pp. 378–86.

    Article  CAS  Google Scholar 

  34. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (NSFC) (Nos. 52004192, 52104381), the China Postdoctoral Science Foundation (No. 2021M692488), the Key Research Projects of Colleges and Universities in Henan Province (No. 20A430020), and the Key Project of Hebei Iron and Steel Group (HG2019313).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingxing Zhou or Guang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Liu, G., Tian, J. et al. Microstructure and Crystallography of a Carbide-Free Bainite Steel Under the Effect of Stress. Metall Mater Trans A 53, 2226–2238 (2022). https://doi.org/10.1007/s11661-022-06664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06664-8

Navigation