Skip to main content
Log in

The Defining Role of Micro-fissures on the Mechanical Behavior of Laser-Welded Fully Austenitic Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser-welded fully austenitic stainless steel (AISI 316LN) weldments revealed the presence of micro-fissures. They appeared at the grain boundaries, near the center of the welds. The grain boundaries, however, did not contain second phase or micro-segregation. The relative presence of micro-fissures decreased with increasing weld heat input. Spatial locations of the micro-fissures and their relative presence were associated with local misorientations and, in particular, with grain reference orientation deviation. Microstructural and microtextural studies indicated that solidification shrinkage was the origin of the micro-fissures in the laser welds. The use of sub-size tensile specimens (of 5- and 1-mm gauge length) with digital image correlation (DIC) related the presence of micro-fissures with mechanical property degradation by the appearance of strain localizations. This was further confirmed by analytical solutions and finite element analysis of critical flaw size and critical stress for fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.S. Prasad, C.S. Rao, and D.N. Rao: J. Manuf. Sci. Prod., 2014, vol. 14, pp. 1–11.

    CAS  Google Scholar 

  2. V.P. Kujanpaa: Weld. J., 1983, vol. 62, pp. 45–52.

    Google Scholar 

  3. C.D. Lundin and C.P.D. Chou: Weld. J., 1985, vol. 64, pp. 113–18.

    Google Scholar 

  4. Y. Cui: PhD diss, University of Tennessee, 2004.

  5. V. Kujanpää, N. Suutala, T. Takalo, and T. Moisio: Weld. Res. Int., 1979, vol. 9, pp. 55–76.

    Google Scholar 

  6. V. Shankar, T.P.S. Gill, A.L.E. Terrance, S.L. Mannan, and S. Sundaresan: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 3109–22.

    Article  CAS  Google Scholar 

  7. J. Yu, M. Rombouts, and G. Maes: Mater. Des., 2013, vol. 45, pp. 228–35.

    Article  CAS  Google Scholar 

  8. J. Brooks and A. Thompson: Int. Mater. Rev., 2011, vol. 19, pp. 16–44.

    Google Scholar 

  9. W. Guo, Q. Liu, J.A. Francis, D. Crowther, A. Thompson, Z. Liu, and L. Li: CIRP Ann. Manuf. Technol., 2015, vol. 64, pp. 197–200.

    Article  Google Scholar 

  10. M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier: Phys. Procedia, 2014, vol. 56, pp. 515–24.

    Article  Google Scholar 

  11. B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi: Adv. Mater. Sci. Eng., 2018, vol. 2018, pp. 1–18.

    Article  CAS  Google Scholar 

  12. L. Li, G. Peng, J. Wang, J. Gong, and S. Meng: Int. J. Heat Mass Transf., 2019, vol. 133, pp. 812–26.

    Article  CAS  Google Scholar 

  13. S. Katayama, Y. Naito, S. Uchiumi, and M. Mizutani: Trans. JWRI, 2006, vol. 35, pp. 13–18.

    CAS  Google Scholar 

  14. Z. Jiang, X. Chen, H. Li, Z. Lei, Y. Chen, S. Wu, and Y. Wang: Mater. Des., 2020, vol. 186, p. 108195.

    Article  CAS  Google Scholar 

  15. J. Hu and H.L. Tsai: in American Society of Mechanical Engineers, Proceeding of IMECE, vol. 374, 2003, pp. 151–59.

  16. S. Kou: Acta Mater., 2015, vol. 88, pp. 366–74.

    Article  CAS  Google Scholar 

  17. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.

    Article  CAS  Google Scholar 

  18. M. Bellet, O. Cerri, M. Bobadilla, and Y. Chastel: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 2705–17.

    Article  CAS  Google Scholar 

  19. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A., 1999, vol. 30A, pp. 449–55.

    Article  CAS  Google Scholar 

  20. V.P. Kujanpää, S.A. David, and C.L. White: Weld. Res., 1986, vol. 65, pp. 203–12.

    Google Scholar 

  21. L. Li and R.W. Messler Jr.: Weld. Res., 2003, vol. 78, pp. 387–96.

    Google Scholar 

  22. M.J. Cieslak, A.M. Ritter, and W.F. Savage: Weld. Res., 1982, vol. 61, pp. 1–8.

    Google Scholar 

  23. C.D. Lundin, C.-P.D. Chou, and C.J. Sullivan: Weld. J., 1980, vol. 59, pp. 226–32.

    Google Scholar 

  24. J.N. DuPont: Weld. Res., 1999, vol. 42, pp. 253–63.

    Google Scholar 

  25. N. Suutala: Metall. Trans. A, 1982, vol. 13A, pp. 2121–30.

    Article  Google Scholar 

  26. S.A. David: Weld. J., 1981, vol. 60, pp. 63–71.

    Google Scholar 

  27. C.D. Lundin and D.F. Spond: Weld. J., 1976, vol. 55, pp. 22–25.

    Google Scholar 

  28. C.D. Lundin, W.T. Delong, and D.F. Spond: Weld. J., 1975, vol. 54, pp. 241–46.

    Google Scholar 

  29. F. Matsuda, H. Nakagawa, T. Uehara, S. Katayama, and Y. Arata: Trans. JWRI, 1979, vol. 8, pp. 105–12.

    CAS  Google Scholar 

  30. H.K.D.H. Bhadeshia, S.A. David, and J.M. Vitek: Mater. Sci. Technol., 1991, vol. 7, pp. 50–61.

    Article  CAS  Google Scholar 

  31. D.J. Kotecki and T.A. Siewert: Weld. J., 1992, vol. 71, pp. 171–78.

    Google Scholar 

  32. T.A. Siewert, C.N. McCowan, and D.L. Olson: Weld. J., 1988, vol. 67, pp. 289–98.

    Google Scholar 

  33. D.L. Olson: Weld. J., 1985, vol. 64, pp. 281–95.

    Google Scholar 

  34. J. Lippold: Weld. J., 1994, vol. 73, pp. 129–39.

    Google Scholar 

  35. N. Suutala, T. Takalo, and T. Moisio: Metall. Trans. A, 1980, vol. 11A, pp. 717–25.

    Article  CAS  Google Scholar 

  36. N. Suutala: Metall. Trans. A, 1983, vol. 14A, pp. 191–97.

    Article  Google Scholar 

  37. W. Chuaiphan and L. Srijaroenpramong: J. Adv. Join. Process., 2020, vol. 2, p. 100027.

    Article  Google Scholar 

  38. P. Datta and G.S. Upadhyaya: Mater. Chem. Phys., 2001, vol. 67, pp. 234–42.

    Article  CAS  Google Scholar 

  39. J. Brooks, A. Thompson, and J. Williams: Weld. J., 1984, vol. 63, pp. 71–83.

    Google Scholar 

  40. M.V. Venkatesan, N. Murugan, S. Sam, and S.K. Albert: Trans. Indian Inst. Met., 2014, vol. 67, pp. 375–83.

    Article  CAS  Google Scholar 

  41. A.V. Bansod, A.P. Patil, A.P. Moon, and S. Shukla: J. Mater. Eng. Perform., 2017, vol. 26, pp. 5847–63.

    Article  CAS  Google Scholar 

  42. A.V. Bansod, A.P. Patil, and S. Shukla: Anti-Corros. Methods Mater., 2018, vol. 65, pp. 605–15.

    Article  CAS  Google Scholar 

  43. H. Vashishtha, R.V. Taiwade, S. Sharma, and A.S. Marodkar: Metallogr. Microstruct. Anal., 2019, vol. 8, pp. 359–69.

    Article  CAS  Google Scholar 

  44. G.R. Mohammed, M. Ishak, S.N. Aqida, and H.A. Abdulhadi: Metals, 2017, vol. 7, pp. 1–18.

    Article  CAS  Google Scholar 

  45. D. Hauser and J.A. Vanecho: Weld. J., 1982, vol. 61, pp. 37–44.

    Google Scholar 

  46. S.S. Babu, J.M. Vitek, Y.S. Iskander, and S.A. David: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 279–85.

    Article  CAS  Google Scholar 

  47. T.N. Tak, A. Prakash, A. Lodh, S.M. Keralavarma, S.V.S. Narayana Murty, I. Samajdar, and P.J. Guruprasad: J. Eng. Mater. Technol. Trans. ASME, 2020, vol. 142, pp. 1–8.

    Article  Google Scholar 

  48. J.C. Lippold and W.F. Savage: Weld. J., 1982, vol. 61, pp. 388–96.

    Google Scholar 

  49. T.J. Lienert and J.C. Lippold: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 1–9.

    Article  CAS  Google Scholar 

  50. V. Tandon, M.A. Thombre, A.P. Patil, R.V. Taiwade, and H. Vashishtha: Metallogr. Microstruct. Anal., 2020, vol. 9, pp. 668–77.

    Article  CAS  Google Scholar 

  51. A.M. Chelladurai, K.A. Gopal, S. Murugan, S.K. Albert, S. Venugopal, and T. Jayakumar: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 578–84.

    Article  CAS  Google Scholar 

  52. A.M. Chelladurai, K.A. Gopal, S. Murugan, S. Venugopal, and T. Jayakumar: Mater. Manuf. Processes, 2015, vol. 30, pp. 162–68.

    Article  CAS  Google Scholar 

  53. M. Montazeri, F. Malek Ghaini, and O.A. Ojo: Weld. J., 2013, vol. 92, pp. 258–64.

    Google Scholar 

  54. K. Nishimoto and H. Mori: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 231–40.

    Article  CAS  Google Scholar 

  55. S. Kumar and A.S. Shahi: Mater. Des., 2011, vol. 32, pp. 3617–23.

    Article  CAS  Google Scholar 

  56. H. Vashishtha, R.V. Taiwade, R.K. Khatirkar, A.V. Ingle, and R.K. Dayal: ISIJ Int., 2014, vol. 54, pp. 1361–67.

    Article  CAS  Google Scholar 

  57. Y. Cui and C.D. Lundin: J. Mater. Sci., 2005, vol. 40, pp. 1281–83.

    Article  CAS  Google Scholar 

  58. Y. Cui, C.D. Lundin, and V. Hariharan: J. Mater. Process. Technol., 2006, vol. 171, pp. 150–55.

    Article  CAS  Google Scholar 

  59. S. Basu, B.N. Jaya, A. Patra, S. Ganguly, M. Dutta, A. Hohenwarter, and I. Samajdar: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4018–32.

    Article  CAS  Google Scholar 

  60. G. Sasikala and S.K. Ray: J. Nucl. Mater., 2011, vol. 408, pp. 45–53.

    Article  CAS  Google Scholar 

  61. P. Ganesh, R. Kaul, G. Sasikala, H. Kumar, S. Venugopal, P. Tiwari, S. Rai, R.C. Prasad, and L.M. Kukreja: Metallogr. Microstruct. Anal., 2014, vol. 3, pp. 36–45.

    Article  CAS  Google Scholar 

  62. W. Gao, K. Chen, X. Guo, and L. Zhang: Mater. Sci. Eng. A, 2017, vol. 685, pp. 107–14.

    Article  CAS  Google Scholar 

  63. E.J. Chun, K. Nishimoto, and K. Saida: Weld. World, 2016, vol. 60, pp. 217–31.

    Article  CAS  Google Scholar 

  64. T.L. Anderson: Fracture Mechanics Fundamentals and Applications, 2nd ed. CRC Press, Boca Raton, 1995.

    Google Scholar 

  65. M.F. Ashby: Materials Selection in Mechanical Design, 3rd ed. Butterworth-Heinemann, Oxford, 2005.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Indira Gandhi Centre for Atomic Research (IGCAR-Kalpakkam) for financial and technical support. The authors would specifically like to thank Dr. D. Fuloria from Vellore Institute of technology and Y. Nagakiran from IIT Bombay for their contribution in capturing the initial microstructures of the weld. Some central facilities at IIT Bombay (such as the National Facility of Texture and OIM, 4D X-ray microscope and the mechanical workshop) are also acknowledged for the EBSD, XRM, and tensile measurements, respectively.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indradev Samajdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Basu, S., Pattnaik, A.B. et al. The Defining Role of Micro-fissures on the Mechanical Behavior of Laser-Welded Fully Austenitic Stainless Steel. Metall Mater Trans A 53, 2116–2129 (2022). https://doi.org/10.1007/s11661-022-06654-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06654-w

Navigation