Skip to main content

Advertisement

Log in

A Dual-Phase Press-Hardening Steel with Improved Mechanical Properties and Superior Oxidation Resistance

  • Topical Collection: 2021 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A dual-phase steel (martensite and ferrite) was designed and manufactured for the hot-forming application in automobile. When the quenching from an intercritical temperature of 825 °C produced about 19 pct fraction of ferrite grains and 80 pct martensite in this steel, such a dual-phase microstructure could ensure that both uniform and post-uniform elongations are decent sufficiently without deteriorating strength, i.e., achieving the best mechanical combination of 1762 MPa ultimate tensile strength (UTS) and 11.2 pct total elongation (TE), which is far better than 22MnB5. The straining behavior of ferrite and martensite during deformation is then discussed on the basis of microstructural parameters. Moreover, much thinner oxide layer, less than 1.6 μm thickness, was formed on the steel after the hot forming than that on 22MnB5, because much lower soaking temperature was employed to produce the dual phase in this steel and the denser/thicker Si/Cr-rich oxide band formed at the bottom of layer, both could greatly reduce the oxidization during hot forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Taylor and A. Clough: Mater. Sci. Technol. Lond., 2018, vol. 34, pp. 809–61.

    Article  CAS  Google Scholar 

  2. S. Li and H. Luo: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 741–53.

    Article  CAS  Google Scholar 

  3. X. Li, Y. Chang, and C. Wang: Mater. Sci. Eng. A, 2017, vol. 679, pp. 240–48.

    Article  CAS  Google Scholar 

  4. Y. Chang, C.Y. Wang, and K.M. Zhao: Mater. Des., 2016, vol. 94, pp. 424–32.

    Article  CAS  Google Scholar 

  5. Z.R. Hou, T. Opitz, and X.C. Xiong: Scripta Mater., 2019, vol. 162, pp. 492–6.

    Article  CAS  Google Scholar 

  6. H. Liu, X. Lu, and X. Jin: Scripta Mater., 2011, vol. 64, pp. 749–52.

    Article  CAS  Google Scholar 

  7. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4022–37.

    Article  CAS  Google Scholar 

  8. T. Taylor, G. Fourlaris, and P. Evans: Mater. Sci. Technol. Lond., 2017, vol. 33, pp. 487–96.

    Article  CAS  Google Scholar 

  9. M.C. Jo, J. Park, and S.S. Sohn: Mater. Sci. Eng. A, 2017, vol. 707, pp. 65–72.

    Article  CAS  Google Scholar 

  10. T. Taylor, G. Fourlaris, and A. Clough: Mater. Sci. Technol. Lond., 2017, vol. 33, pp. 1964–77.

    Article  CAS  Google Scholar 

  11. H.L. Yi, S. Ghosh, and H. Bhadeshia: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4870–74.

    Article  CAS  Google Scholar 

  12. Z. Wang, Z.H. Cao, and J.F. Wang: Scripta Mater., 2021, vol. 192, pp. 19–25.

    Article  CAS  Google Scholar 

  13. N. Nakada, Y. Arakawa, and K.S. Park: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128–33.

    Article  CAS  Google Scholar 

  14. Z. Zhao, T. Tong, and J. Liang: Mater. Sci. Eng. A, 2014, vol. 618, pp. 182–88.

    Article  CAS  Google Scholar 

  15. M. Soliman and H. Palkowski: Mater. Sci. Eng. A, 2020, vol. 777, p. 139044.

    Article  CAS  Google Scholar 

  16. H. Luo, X. Wang, and Z. Liu: J. Mater. Sci. Technol., 2020, vol. 51, pp. 130–36.

    Article  Google Scholar 

  17. S. Li, P. Wen, and S. Li: Acta Mater., 2021, vol. 205, p. 116567.

    Article  CAS  Google Scholar 

  18. M. Calcagnotto, D. Ponge, and E. Demir: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  CAS  Google Scholar 

  19. B. Hu and H. Luo: Acta Mater., 2019, vol. 176, pp. 250–63.

    Article  CAS  Google Scholar 

  20. J. Kadkhodapour, S. Schmauder, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4387–94.

    Article  CAS  Google Scholar 

  21. A.G. Kalashami, A. Kermanpur, and E. Ghassemali: Mater. Sci. Eng. A, 2016, vol. 678, pp. 215–26.

    Article  CAS  Google Scholar 

  22. D.A. Korzekwa and D.K. Matlock: Metall. Mater. Trans. A, 1984, vol. 15A, p. 1221.

    Article  CAS  Google Scholar 

  23. Y.I. Son, Y.K. Lee, and K.T. Park: Acta Mater., 2005, vol. 53, pp. 3125–34.

    Article  CAS  Google Scholar 

  24. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.

    Article  CAS  Google Scholar 

  25. B. Zhu, J. Zhu, and Y. Wang: J. Mater. Process. Technol., 2018, vol. 262, pp. 392–402.

    Article  CAS  Google Scholar 

  26. J. Zhou, B. Wang, and M. Huang: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 544–55.

    Article  CAS  Google Scholar 

  27. M. Calcagnotto, Y. Adachi, and D. Ponge: Acta Mater., 2011, vol. 59, pp. 658–70.

    Article  CAS  Google Scholar 

  28. X.H. Wang, Z.B. Liu, and H.W. Luo: Mater Charact., 2017, vol. 131, pp. 480–91.

    Article  CAS  Google Scholar 

  29. S. Li, C. Guo, and L. Hao: Mater. Sci. Eng. A, 2019, vol. 759, pp. 624–32.

    Article  CAS  Google Scholar 

  30. A. Smith, H. Luo, and D.N. Hanlon: ISIJ Int., 2004, vol. 44, pp. 1188–94.

    Article  CAS  Google Scholar 

  31. Q. Jin, J. Li, and Y. Xu: Corros. Sci., 2010, vol. 52, pp. 2846–54.

    Article  CAS  Google Scholar 

  32. J. Wang, S. Lu, and L. Rong: Corros. Sci., 2016, vol. 111, pp. 13–25.

    Article  CAS  Google Scholar 

  33. W. Peng, Z. Yang, and G. Jia: Corros. Sci., 2019, vol. 150, pp. 235–45.

    Article  CAS  Google Scholar 

  34. Y. Xu, X. Zhang, and L. Fan: Corros. Sci., 2015, vol. 100, pp. 311–21.

    Article  CAS  Google Scholar 

  35. L. Zhang, W. Yan, and Q. Shi: Corros. Sci., 2020, vol. 167, p. 108519.

    Article  CAS  Google Scholar 

  36. B. Hutchinson, P. Bate, and D. Lindell: Acta Mater., 2018, vol. 152, pp. 239–47.

    Article  CAS  Google Scholar 

  37. A.M. Sarosiek and W.S. Owen: Mater. Sci. Eng., 1984, vol. 66, pp. 13–34.

    Article  CAS  Google Scholar 

  38. E. Ahmad, T. Manzoor, and N. Hussain: Mater. Sci. Eng. A, 2009, vol. 508, pp. 259–65.

    Article  CAS  Google Scholar 

  39. C.L. Magee and R.G. Davies: Acta Metall., 1972, vol. 20, pp. 1031–43.

    Article  CAS  Google Scholar 

  40. E. Chandiran, Y. Sato, and N. Kamikawa: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4111–26.

    Article  CAS  Google Scholar 

  41. M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from National Natural Science Foundation of China (Nos. 51831002, 51904028), Fundamental Research Funds for the Central Universities (Nos. 06600019 and 06500151) and Baosteel Central Research Institute are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuanhui Hu or Haiwen Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Hu, K., Chen, H. et al. A Dual-Phase Press-Hardening Steel with Improved Mechanical Properties and Superior Oxidation Resistance. Metall Mater Trans A 53, 1934–1944 (2022). https://doi.org/10.1007/s11661-022-06650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06650-0

Navigation