Skip to main content

Advertisement

Log in

Electrochemical Behavior of SLM Ti–6Al–4V Alloy After Long Time of Immersion in Lactic Acid Environment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The corrosion behavior of selective laser melted Ti–6Al–4V alloy (SLM Ti–6Al–4V) was assessed in 0.1 M lactic acid + 0.1 M NaCl environment (pH 2.5) after 1150 hours of immersion at 37 °C and was compared with that of wrought Ti–6Al–4V alloy. Corrosion potential Ecor (Ecor = 0.083 ± 0.02 V) and corrosion current icor (icor = 0.145 ± 0.05 μA cm−2) of SLM Ti–6Al–4V alloy, estimated from anodic polarization tests, are under minimum recommended values for biomaterial surgical applications. Based on open-circuit potential (OCP) investigations, one may infer that this good corrosion resistance is due to the formation of a fast and stable protective oxide layer. According to X-ray photoelectron spectroscopy (XPS) results, this protective oxide layer is mainly formed from TiO2. From electrochemical impedance spectroscopy (EIS) investigations, a slightly lower corrosion resistance was observed at SLM Ti–6Al–4V alloy compared to the wrought one. Thus, the R1 associated with barrier film resistance of SLM Ti–6Al–4V is 339.1 kΩ cm2 whereas that one of wrought Ti–6Al–4V is 780.1 kΩ cm2. These results are conspicuous ones because they point out that SLM technique, which allows obtaining easily customized implants without expensive costs, is a valid alternative for obtaining new alloys for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Qu, L. Wang, Y. Chen, L. Li, Y. He, and Z. Ding: Materials, 2014, vol. 7, pp. 5528–42.

    Article  Google Scholar 

  2. C. Vasilescu, S.I. Drob, P. Osiceanu, J.M. Calderon Moreno, M. Prodana, D. Ionita, I. Demetrescu, M. Marcu, I.A. Popovici, and E. Vasilescu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 513–23.

    Article  Google Scholar 

  3. C. Vasilescu, P. Osiceanu, J.M.C. Moreno, S.I. Drob, S. Preda, M. Popa, I. Dan, M. Marcu, M. Prodana, I.A. Popovici, D. Ionita, and E. Vasilescu: Mater. Sci. Eng. C, 2017, vol. 71, pp. 322–34.

    Article  CAS  Google Scholar 

  4. D.M. Gordin, R. Ion, C. Vasilescu, S.I. Drob, A. Cimpean, and T. Gloriant: Mater. Sci. Eng. C, 2014, vol. 44, pp. 362–70.

    Article  CAS  Google Scholar 

  5. F. Toptan, A.C. Alves, O. Carvalho, F. Bartolomeu, F. Silva, G. Miranda, and A.M.P. Pinto: J. Mater. Process. Technol., 2019, vol. 266, pp. 239–45.

    Article  CAS  Google Scholar 

  6. R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, and E. Masanet: J. Clean. Prod., 2016, vol. 135, pp. 1559–70.

    Article  CAS  Google Scholar 

  7. T.M. Pollock, A.J. Clarke, and S.S. Babu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 6000–19.

    Article  Google Scholar 

  8. H.M. Hamza, K.M. Deen, and W. Haider: Mater. Sci. Eng. C, 2020, vol. 113, p. 110980.

    Article  CAS  Google Scholar 

  9. D. Mah, M.H. Pelletier, V. Lovric, and W.R. Walsh: Ann. Biomed. Eng., 2019, vol. 47, pp. 162–73.

    Article  Google Scholar 

  10. M.P. Licausi, A. Igual, V. Munozand, and A. Borras: J. Mech. Behav. Biomed. Mater., 2013, vol. 20, pp. 137–48.

    Article  CAS  Google Scholar 

  11. J.C.M. Souza, S.L. Barbosa, E. Ariza, J.P. Celis, and L.A. Rocha: Wear, 2012, vol. 292–293, pp. 82–88.

    Article  Google Scholar 

  12. A. Banu, M. Marcu, C. Juganaru, P. Osiceanu, M. Anastasescu, and L. Capra: Arab. J. Chem., 2019, vol. 12, pp. 2007–16.

    Article  CAS  Google Scholar 

  13. Y. Okazakia and E. Gotoh: Biomaterials, 2005, vol. 26, pp. 11–21.

    Article  Google Scholar 

  14. ASTM B977, ASTM F1108-97 Standard Specification for Ti6Al4V Alloy Castings for Surgical Implants (UNS R56406) ASTM F2924-14 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion.

  15. ISO 10271/2001-Dental Metallic Materials-Corrosion Test Methods.

  16. J. Vaithilingam, E. Prina, R.D. Goodridge, R.J.M. Hague, F.R.A.J. Rose, S.D.R. Christie, and S. Edmondson: Mater. Sci. Eng. C, 2016, vol. 67, pp. 294–303.

    Article  CAS  Google Scholar 

  17. A. Tamadon, D.J. Pons, K. Sued, and D. Clucas: Metals, 2017, vol. 7, p. 423.

    Article  Google Scholar 

  18. M. Fousova, D. Vojtech, J. Kubasek, E. Jablonska, and J. Fojt: J. Mech. Behav. Biomed. Mater., 2017, vol. 69, pp. 368–76.

    Article  CAS  Google Scholar 

  19. K.S. Chan, M. Koike, R.L. Mason, and T. Okabe: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1010–22.

    Article  Google Scholar 

  20. L.L. Dinca Boulven, A. Banu, G.N. Soylu, G. Dobri, and M.E. Mocirla: MATEC Web of Conferences 299 01005 MTeM 2019, 2019.

  21. F. Variola, J.H. Yi, L. Richert, J.D. Wuest, F. Rosei, and A. Nanci: Biomaterials, 2008, vol. 29, p. 1285.

    Article  CAS  Google Scholar 

  22. M. Jenko, M. Goren, M. Gotec, M. Hodnik, B. Setinabati, C. Donik, J.T. Grant, and D. Dolinar: Appl. Surf. Sci., 2018, vol. 427, pp. 584–93.

    Article  CAS  Google Scholar 

  23. L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, and C. Martelet: Mater. Sci. Eng. C, 2003, vol. 23, pp. 551–60.

    Article  Google Scholar 

  24. Y. Yan, E. Chibowski, and A. Szcześ: Mater. Sci. Eng. C, 2017, vol. 70, pp. 207–51.

    Article  CAS  Google Scholar 

  25. X. Zhu, J. Chen, L. Scheidler, and J. Geis-Gerstorfer: Biomaterials, 2004, vol. 25, pp. 4087–4103.

    Article  CAS  Google Scholar 

  26. F.X. Xie, X.B. He, S.L. Cao, X. Lu, and X.H. Qu: Corros. Sci., 2013, vol. 67, pp. 217–24.

    Article  CAS  Google Scholar 

  27. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed. Pergamon Press, New York, 1966, pp. 243–45.

    Google Scholar 

  28. R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, and R.M. Souto: Electrochim. Acta, 2014, vol. 137, pp. 280–89.

    Article  CAS  Google Scholar 

  29. L. Preda, C. Negrila, M.F. Lazarescu, M. Enache, M. Anastasescu, A.M. Toader, S. Ionescu, and V. Lazarescu: Electrochim. Acta, 2013, vol. 104, pp. 1–11.

    Article  CAS  Google Scholar 

  30. J. Yang, H. Yang, H. Yu, Z. Wang, and X.A. Zeng: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3583–86.

    Article  Google Scholar 

  31. D. Wang, P. Li, K. Kang, C. Zang, J. Yin, M. Jing, and X. Zeng: Surf. Coat. Technol., 2016, vol. 300, pp. 128–34.

    Article  CAS  Google Scholar 

  32. A. Sharma, M.C. Oh, J.T. Kim, A.K. Srivastava, and B. Ahn: J. Alloys Compd., 2020, vol. 830, p. 154620.

    Article  CAS  Google Scholar 

  33. M. Eliaz: Materials, 2019, vol. 12, p. 407.

    Article  CAS  Google Scholar 

  34. R. Ion, C. Vasilescu, P. Drob, E. Vasilescu, A. Cimpean, S.I. Drob, D.M. Gordin, and T. Gloriant: Mater. Corros., 2014, vol. 65, pp. 593–604.

    Article  CAS  Google Scholar 

  35. E. Almanza, M.J. Pérez, N.A. Rodríguez, and L.E. Murr: J. Mater. Res. Technol., 2017, vol. 6, pp. 251–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Romanian Ministry of Research in the frame of National Project PN-III-P2-2.1-PED-2019 Contract No. 329PED/2020. Some investigations were performed within the framework of the “Electrochemical preparation and characterization of active materials with predetermined features” Research Project of the “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy. Contact angle measurements were performed using the research infrastructure acquired under POS-CCEO2.2.1 Project EU (ERDF) INFRANANOCHEM—No. 19/01.03.2009 and Romanian Government. The authors thank Dr. Alexandru Paraschiv, COMOTI—Romanian Research and Development Institute for Gas Turbines, Bucharest, Romania for SEM and EDS analysis.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Marcu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, A., Preda, L., Marcu, M. et al. Electrochemical Behavior of SLM Ti–6Al–4V Alloy After Long Time of Immersion in Lactic Acid Environment. Metall Mater Trans A 53, 2060–2070 (2022). https://doi.org/10.1007/s11661-022-06648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06648-8

Navigation