Skip to main content
Log in

Evaluation of Strain Hardening During Uniaxial Tensile Loading Followed by Stress Relaxation and Reloading

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The estimation of strain hardening during uniaxial tensile loading followed by stress relaxation and reloading is required to quantify the strain aging and ductility improvement. The strain hardening, effective stress, and internal stress are associated with the variation of mobile and forest dislocations during uniaxial loading followed by stress relaxation and reloading, and it is shown by analytically coupling them in this work. The strain hardening behavior of the aluminum sample is examined in this procedure. Strain hardening occurs in the sample due to generated mobile and forest dislocations. Exhaustion of mobile dislocation density significantly affects the stress drop and activation volume during stress relaxation, which further causes strain hardening. Apart from this, mobile dislocation density increases in the initial stage of uniaxial loading and reloading after stress relaxation. A new relationship is proposed for the evolution of dislocations causing strain hardening during reloading. It has been validated with the literature data and found to be well fitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Lu: Science (80-)., 2010, vol. 328, pp. 319–20.

    Article  CAS  Google Scholar 

  2. R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.

    Article  CAS  Google Scholar 

  3. S. Kumar, K. Hariharan, R.K. Digavalli, and S.K. Paul: J. Manuf. Process., 2019, vol. 38, pp. 49–62.

    Article  Google Scholar 

  4. L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu, and S. Suresh: Acta Mater., 2005, vol. 53, pp. 2169–79.

    Article  CAS  Google Scholar 

  5. Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4259–67.

    Article  Google Scholar 

  6. A. Vinogradov, I.S. Yasnikov, H. Matsuyama, M. Uchida, Y. Kaneko, and Y. Estrin: Acta Mater., 2016, vol. 106, pp. 295–303.

    Article  CAS  Google Scholar 

  7. W.L. Li, N.R. Tao, and K. Lu: Scripta Mater., 2008, vol. 59, pp. 546–49.

    Article  CAS  Google Scholar 

  8. A. Considére: 1885, pp. 574–775.

  9. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  10. K. Hariharan and F. Barlat: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 513–17.

    Article  Google Scholar 

  11. F. Barlat, M.V. Glazov, J.C. Brem, and D.J. Lege: Int. J. Plast., 2002, vol. 18, pp. 919–39.

    Article  CAS  Google Scholar 

  12. Y. Bergström, Y. Granbom, and D. Sterkenburg: J. Metall., 2010, vol. 2010, pp. 1–16.

    Article  Google Scholar 

  13. G.-H. Zhao, X. Xu, D. Dye, and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2020, vol. 183, pp. 155–64.

    Article  Google Scholar 

  14. N. Ueshima, K. Kubota, and K. Oikawa: Materialia, 2019, vol. 8, p. 100464.

    Article  CAS  Google Scholar 

  15. M. Zecevic and M. Knezevic: Int. J. Plast., 2015, vol. 72, pp. 200–17.

    Article  CAS  Google Scholar 

  16. M. Zecevic, M. Knezevic, B. Mcwilliams, and R.A. Lebensohn: Int. J. Plast., 2020, vol. 130, p. 102705.

    Article  CAS  Google Scholar 

  17. M. Knezevic, L. Capolungo, C.N. Tome, R.A. Lebensohn, D.J. Alexander, B. Mihaila, and R.J. Mccabe: Acta Mater., 2012, vol. 60, pp. 702–15.

    Article  CAS  Google Scholar 

  18. J. Hu, B. Chen, D.J. Smith, P.E.J. Flewitt, and A.C.F. Cocks: Int. J. Plast., 2016, vol. 84, pp. 203–23.

    Article  CAS  Google Scholar 

  19. K. Hariharan, P. Dubey, and J. Jain: Mater. Sci. Eng. A, 2016, vol. 673, pp. 250–56.

    Article  CAS  Google Scholar 

  20. K. Osakada, K. Mori, T. Altan, and P. Groche: CIRP Ann. - Manuf. Technol., 2011, vol. 60, pp. 651–72.

    Article  Google Scholar 

  21. K. Prasad, H. Krishnaswamy, and J. Jain: J. Mater. Process. Technol., 2018, vol. 255, pp. 1–7.

    Article  CAS  Google Scholar 

  22. A. Varma, A. Gokhale, J. Jain, K. Hariharan, P. Cizek, and M. Barnett: Philos. Mag., 2018, vol. 98, pp. 165–81.

    Article  CAS  Google Scholar 

  23. T.J. Roemer, T.J. Barrett, M. Knezevic, B.L. Kinsey, and Y.P. Korkolis: J. Mater. Process. Technol., 2019, vol. 266, pp. 707–14.

    Article  CAS  Google Scholar 

  24. M. Knezevic, C.M. Poulin, X. Zheng, S. Zheng, and I.J. Beyerlein: Mater. Sci. Eng. A, 2019, vol. 758, pp. 47–55.

    Article  CAS  Google Scholar 

  25. B. Modi and D.R. Kumar: Int. J. Adv. Manuf. Technol., 2013, vol. 66, pp. 1159–69.

    Article  Google Scholar 

  26. A. and others Standard: E328-02, Int. West Conshohocken, PA. https://doi.org/10.1520/E0328-13.

  27. I. Gupta and J.C.M. Li: Metall Trans., 1970, vol. 1, pp. 2323–30.

    Article  CAS  Google Scholar 

  28. D. Caillard and J.-L. Martin: Thermally Activated Mechanisms in Crystal Plasticity, Elsevier, Oxford, 2003.

    Google Scholar 

  29. T. Kruml, O. Coddet, and J.L. Martin: Acta Mater., 2008, vol. 56, pp. 333–40.

    Article  CAS  Google Scholar 

  30. A. Varma, H. Krishnaswamy, J. Jain, M.-G. Lee, and F. Barlat: Mech. Mater., 2019, vol. 133, pp. 138–53.

    Article  Google Scholar 

  31. S. Mishra, V.K. Beura, A. Singh, and M. Yadava: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3472–77.

    Article  CAS  Google Scholar 

  32. K. Hariharan and J. Jain: Manuf. Lett., 2020, vol. 26, pp. 64–68.

    Article  Google Scholar 

  33. F.H.D. Torre, E.V. Pereloma, and C.H.J. Davies: Scripta Mater., 2004, vol. 51, pp. 367–71.

    Article  CAS  Google Scholar 

  34. K. Prasad and S.V. Kamat: Mater. Sci. Eng. A, 2008, vol. 490, pp. 477–80.

    Article  Google Scholar 

  35. K. Prasad, H. Krishnaswamy, and N. Arunachalam: J. Alloys Compd., 2020, vol. 828, p. 154450.

    Article  CAS  Google Scholar 

  36. A. Seeger, J. Diehl, S. Mader, and H. Rebstock: Philos. Mag., 1957, vol. 2, pp. 323–50.

    Article  CAS  Google Scholar 

  37. E. Orowan: Proc. Phys. Soc., 1940, vol. 52, pp. 8–22.

    Article  Google Scholar 

  38. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  39. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    Article  CAS  Google Scholar 

  40. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  41. M.S. Mohebbi, A. Akbarzadeh, Y.O. Yoon, and S.K. Kim: Mech. Mater., 2015, vol. 89, pp. 23–34.

    Article  Google Scholar 

  42. V.I. Dotsenko: Phys. Status Solidi, 1979, vol. 93, pp. 11–43.

    Article  CAS  Google Scholar 

  43. A. Sarkar and J.K. Chakravartty: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5638–43.

    Article  CAS  Google Scholar 

  44. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, pp. 71–79.

    Article  Google Scholar 

  45. K. Hariharan, O. Majidi, C. Kim, M.G. Lee, and F. Barlat: Mater. Des., 2013, vol. 52, pp. 284–88.

    Article  CAS  Google Scholar 

  46. Y.M. Wang, A.V. Hamza, and E. Ma: Appl. Phys. Lett., 2005, vol. 86, pp. 1–3.

    Google Scholar 

  47. C.X. Huang, W.P. Hu, and Q.Y. Wang: Mater. Sci. Eng. A., 2014, vol. 611, pp. 274–79.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S. Evaluation of Strain Hardening During Uniaxial Tensile Loading Followed by Stress Relaxation and Reloading. Metall Mater Trans A 53, 1336–1344 (2022). https://doi.org/10.1007/s11661-022-06593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06593-6

Navigation