Skip to main content
Log in

Modified Kocks–Mecking–Estrin Model to Account Nonlinear Strain Hardening

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dislocation density-based model after Kocks–Mecking–Estrin (KME) is widely used to characterize the thermally activated plastic deformation and dislocation kinetics. According to the model, the slope of the stress–strain curve decreases linearly with stress, which contradicts the experimental observation. In the current study, the evolution of dislocation density in the model is generalized to account for the nonlinearity of the slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. At high temperatures, the annihilation term involves additional parameters for modeling dislocation climb and other factors.[10]

  2. For a coarse-grained structure, this factor remains constant. For smaller grains, the size effect can be included in the form of empirical Hall–Petch relation.

  3. Barlat[15] proposed two methods of parameter identification in their paper. The parameters obtained from the least square curve fitting (Case B) are used in the current study.

References

  1. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 48 (3), pp. 171–273 (2003)

    Article  Google Scholar 

  2. Y. Estrin, H. Mecking, Acta Metall. 32(I), 57 (1984)

    Article  Google Scholar 

  3. E. Hart, Acta Metall. 18, 599 (1970)

    Article  Google Scholar 

  4. J. Swearengen, R. Rohde, D. Hicks, Acta Metall. 24, 969 (1976)

    Article  Google Scholar 

  5. K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)

    Article  Google Scholar 

  6. E.F. Rauch, J.J. Gracio, F. Barlat, Acta Mater. 55, 2939 (2007)

    Article  Google Scholar 

  7. K. Hariharan, M.J. Kim, S.T. Hong, D. Kim, J.H. Song, M.G. Lee, H.N. Han, Mater. Des. 124, 131 (2017)

    Article  Google Scholar 

  8. D.L. Holt, J. Appl. Phys. 41(8), 3197 (1970)

    Article  Google Scholar 

  9. H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)

    Article  Google Scholar 

  10. L.E. Lindgren, K. Domkin, S. Hansson, Mech. Mater. 40(11), 907 (2008)

    Article  Google Scholar 

  11. Y. Estrin, J. Mater. Process. Technol. 80-81, 33 (1998)

    Article  Google Scholar 

  12. E. Nes, Prog. Mater. Sci. 41(3), 129 (1997)

    Article  Google Scholar 

  13. Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet, Acta Mater. 46(15), 5509 (1998)

    Article  Google Scholar 

  14. A. Ma, F. Roters, Acta Mater. 52(12), 3603 (2004)

    Article  Google Scholar 

  15. F. Barlat, M.V. Glazov, J.C. Brem, D. Lege, Int. J. Plast. 18(7), 919 (2002)

    Article  Google Scholar 

  16. J. Gracio, J. Fernandes, J. Schmitt, Mater. Sci. Eng. A 118, 97 (1989)

    Article  Google Scholar 

  17. C. Keller, E. Hug, Int. J. Plast. 98, 106 (2017)

    Article  Google Scholar 

  18. M. Greenberg, Advanced Engineering Mathematics, 2nd edn. (Pearson Education Inc., 1998)

    Google Scholar 

  19. M.R. Staker, D.L. Holt, Acta Metall. 20(4), 569 (1972)

    Article  Google Scholar 

  20. L.E. Lindgren, Q. Hao, D. Wedberg, Mech. Mater. 108, 68 (2017)

    Article  Google Scholar 

  21. S. Kok, A.J. Beaudoin, D.A. Tortorelli, Acta Mater. 50(7), 1653 (2002)

    Article  Google Scholar 

  22. E.I. Galindo-Nava, P.E. Rivera-Díaz-Del-Castillo, Acta Mater. 60(11), 4370 (2012)

    Article  Google Scholar 

  23. D.A. Hughes, Q. Liu, D.C. Chrzan, N. Hansen, Acta Mater. 45(1), 105 (1997)

    Article  Google Scholar 

  24. A. Molinari, G. Ravichandran, Mech. Mater. 37(7), 737 (2005)

    Article  Google Scholar 

  25. B. Babu, L.E. Lindgren, Int. J. Plast. 50, 94 (2013)

    Article  Google Scholar 

  26. M. Zamani, H. Dini, A. Svoboda, L.E. Lindgren, S. Seifeddine, N.E. Andersson, A.E.W. Jarfors, Int. J. Mech. Sci. 121(December 2016), 164 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Hariharan.

Additional information

Manuscript submitted June 18, 2018.

Appendix

Appendix

The inconsistency in KME model due to fitting procedure is explained below. The model parameters were identified by minimizing the error in predicting the complete stress–strain curve. The parameters thus obtained are used to predict the trend of \(\theta \) from Eq. [5]. It was mentioned that all the data points carry equal weightages, and hence the fitting procedure results in a best linear fit of \(\theta \) over the entire range. This masks the inaccuracy of KME model at large stress (Figure 2). To further prove this, the experimental data shown in Figure 1 are segmented as shown in Figure A1.

The fitting procedure is repeated for each strain range, and the parameters are tabulated in Table A1.

Fig. A1
figure 3

Stress–strain data in Fig. 1 segmented to analyze the influence of strain range in parameter identification

Table A1 Dislocation Density Parameters for KME Model Obtained by Fitting Different Strain range

The above parameters are used to plot stress–strain (Figure A2) and \(\theta \)vs\(\sigma \) curves (Figure A3). It is observed that \(\theta \) predicted using the parameters for the strain range from 0 to 0.1 correlates with the experimental values of \(\theta \) in lower stress range (typically representing the stages II and III hardening). However, the stress–strain curve is accurate only till \(\varepsilon =0.1\). On the other hand, parameters obtained over the entire strain range fit the stress–strain curve accurately; however, they average the \(\theta \) values. This averaging effect leads to an apparent inconsistency in the general understanding of KME model, as the KME model is known to be accurate at lower stresses and tend to deviate at higher stress range.

Fig. A2
figure 4

Stress–strain curve predicted using the KME parameters identified by varying the strain range. The predicted curve deviates from the experimental data when extrapolated to higher strain range

Fig. A3
figure 5

\(\theta = \frac{\mathrm{{d}} \sigma }{\mathrm{{d}} \varepsilon }\) is sensitive to the strain range used for parameter identification. \(\theta \) predicted is averaged over the data range

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, K., Barlat, F. Modified Kocks–Mecking–Estrin Model to Account Nonlinear Strain Hardening. Metall Mater Trans A 50, 513–517 (2019). https://doi.org/10.1007/s11661-018-5001-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5001-9

Navigation