Skip to main content
Log in

Microstructure Evolution and Grain Growth Competition in Directionally Solidified Ternary Al–Ag2Al–Al2Cu Eutectic

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Eutectics serve as an interesting material class for fundamental research on solidification as well as holding promise for new, high-tech applications. Thus, significant efforts have been made recently to understand the microstructure formation in ternary eutectics including Al–Ag2Al–Al2Cu, but mechanisms for microstructure evolution and pattern formation in these complex systems are not yet fully understood. This study focuses on the novel aspect of eutectic grain interaction by investigating mechanisms of grain growth competition at different heights in a directionally solidified sample by means of SEM, quantitative image analysis, and EBSD. An image analysis procedure was developed to visualize the microstructure alignment, allowing identification of individual eutectic grains and grain boundaries without large-scale EBSD analysis. This technique allowed for microstructural evolution to be tracked in individual grains as a function of growth height within a directionally solidified Al–Ag–Cu invariant ternary eutectic, demonstrating the pronounced defeat of less-ordered three-phase arrangements and indicating an energetic- or orientation-conditioned grain growth competition. Additionally, faceted interphase boundaries of Ag2Al were discovered and complex interactions depending on the crystallographic orientation at grain boundaries were analyzed, calling for revised models to evaluate microstructure formation in ternary eutectics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from 7 mm height

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik: Adv. Funct. Mater., 2010, vol. 20, pp. 1116–24.

    Article  CAS  Google Scholar 

  2. D.A. Pawlak: Sci. Plena., 2008, vol. 4, p. 14801.

    Google Scholar 

  3. P. Steinmetz, A. Dennstedt, M. Şerefoğlu, I. Sargin, A. Genau, and U. Hecht: Acta Mater., 2018, vol. 157, pp. 96–105.

    Article  CAS  Google Scholar 

  4. A. Dennstedt, M. Becker, P. Steinmetz, and L. Ratke: Microtomography of Directionally Solidified Ternary Eutectic Al–Ag–Cu Alloy (Experiment Report), 2015.

  5. P. Steinmetz, J. Hötzer, A. Dennstedt, C. Serr, B. Nestler, and A. Genau: J. Cryst. Growth., 2018, vol. 498, pp. 230–43.

    Article  CAS  Google Scholar 

  6. P. Steinmetz, S. Gadkari, and A. Genau: J. Cryst. Growth., 2019, vol. 507, pp. 425–36.

    Article  CAS  Google Scholar 

  7. A. Genau and L. Ratke: Int. J. Mater. Res., 2012, vol. 103, pp. 469–75.

    Article  CAS  Google Scholar 

  8. A.L. Genau and L. Ratke: IOP Conf. Ser. Mater. Sci. Eng., 2011, vol. 27, p. 012032.

    Article  Google Scholar 

  9. J. Brillo, Y. Plevachuk, and I. Egry: J. Mater. Sci., 2010, vol. 45, pp. 5150–57.

    Article  CAS  Google Scholar 

  10. A. Dennstedt and L. Ratke: Trans. Indian Inst. Met., 2012, vol. 65, pp. 777–82.

    Article  CAS  Google Scholar 

  11. D. Du, Y. Fautrelle, Z. Ren, R. Moreau, and X. Li: Acta Mater., 2016, vol. 121, pp. 240–56.

    Article  CAS  Google Scholar 

  12. S. Ebzeeva and L. Froyen: Trans. Indian Inst. Met., 2007, vol. 60, pp. 207–12.

    CAS  Google Scholar 

  13. F. Dai and B. Wei: Sci. China G., 2009, vol. 52, pp. 848–55.

    Article  CAS  Google Scholar 

  14. U. Böyük, N. Maraşlı, E. Çadırlı, H. Kaya, and K. Keşlioǧlu: Curr. Appl. Phys., 2012, vol. 12, pp. 7–10.

    Article  Google Scholar 

  15. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioǧlu: Appl. Phys. A., 2009, vol. 95, pp. 923–32.

    Article  Google Scholar 

  16. P. Steinmetz, M. Kellner, J. Hötzer, A. Dennstedt, and B. Nestler: Comput. Mater. Sci., 2016, vol. 121, pp. 6–13.

    Article  CAS  Google Scholar 

  17. P. Steinmetz, M. Kellner, J. Hötzer, and B. Nestler: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 213–24.

    Article  Google Scholar 

  18. P. Steinmetz, J. Hötzer, M. Kellner, A. Genau, and B. Nestler: Comput. Mater. Sci., 2018, vol. 148, pp. 131–40.

    Article  CAS  Google Scholar 

  19. J. Hötzer, P. Steinmetz, M. Jainta, S. Schulz, M. Kellner, B. Nestler, A. Genau, A. Dennstedt, M. Bauer, H. Köstler, and U. Rüde: Acta Mater., 2016, vol. 106, pp. 249–59.

    Article  Google Scholar 

  20. J. Hötzer, P. Steinmetz, A. Dennstedt, A. Genau, M. Kellner, I. Sargin, and B. Nestler: Acta Mater., 2017, vol. 136, pp. 335–46.

    Article  Google Scholar 

  21. A. Choudhury: Trans. Indian Inst. Met., 2015, vol. 68, pp. 1–15.

    Article  Google Scholar 

  22. M. Ruggiero and J. Rutter: Mater. Sci. Technol., 1997, vol. 13, pp. 5–11.

    Article  CAS  Google Scholar 

  23. D. Lewis, S. Allen, M. Notis, and A. Scotch: J. Electron. Mater., 2002, vol. 31, pp. 161–67.

    Article  CAS  Google Scholar 

  24. I. Sargin, A.L. Genau, and R.E. Napolitano: J. Phase Equilib. Diffus., 2016, vol. 37, pp. 75–85.

    Article  CAS  Google Scholar 

  25. A. Dennstedt, A. Choudhury, L. Ratke, and B. Nestler: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 117, p. 012025.

    Article  Google Scholar 

  26. A. Dennstedt, L. Ratke, A. Choudhury, and B. Nestler: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 140–47.

    Article  CAS  Google Scholar 

  27. I. Sargin and S.P. Beckman: Sci. Rep., 2019, vol. 9, pp. 1–8.

    Article  CAS  Google Scholar 

  28. I. Sargin: Invariant and Univariant Eutectic Solidification in Ternary Alloys, PhD Dissertation, Iowa State University, 2015.

  29. K.A. Jackson and J.D. Hunt: Dyn. Curved Front., 1966, pp. 363–76.

  30. J. Hötzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt, A. Genau, M. Bauer, H. Köstler, and U. Rüde: Acta Mater., 2015, vol. 93, pp. 194–204.

    Article  Google Scholar 

  31. J. De Wilde, E. Nagels, F. Lemoisson, and L. Froyen: Mater. Sci. Eng. A., 2005, vol. 413–414, pp. 514–20.

    Article  Google Scholar 

  32. P. Steinmetz, J. Hötzer, M. Kellner, A. Dennstedt, and B. Nestler: Comput. Mater. Sci., 2016, vol. 117, pp. 205–14.

    Article  CAS  Google Scholar 

  33. A. Choudhury, Y.C. Yabansu, S.R. Kalidindi, and A. Dennstedt: Acta Mater., 2016, vol. 110, pp. 131–41.

    Article  CAS  Google Scholar 

  34. P. Steinmetz, Y.C. Yabansu, J. Hötzer, M. Jainta, B. Nestler, and S.R. Kalidindi: Acta Mater., 2016, vol. 103, pp. 192–203.

    Article  CAS  Google Scholar 

  35. Y.C. Yabansu, P. Steinmetz, J. Hötzer, S.R. Kalidindi, and B. Nestler: Acta Mater., 2017, vol. 124, pp. 182–94.

    Article  CAS  Google Scholar 

  36. A. Dennstedt, L. Helfen, P. Steinmetz, B. Nestler, and L. Ratke: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 981–84.

    Article  Google Scholar 

  37. S. Mohagheghi, U. Hecht, S. Bottin-Rousseau, S. Akamatsu, G. Faivre, and M. Şerefoğlu: IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 529, p. 012010.

    Article  CAS  Google Scholar 

  38. U. Hecht, J. Eiken, S. Akamatsu, and S. Bottin-Rousseau: Acta Mater., 2019, vol. 170, pp. 268–77.

    Article  CAS  Google Scholar 

  39. S. Akamatsu, S. Bottin-Rousseau, M. Şerefoğlu, and G. Faivre: Acta Mater., 2012, vol. 60, pp. 3206–14.

    Article  CAS  Google Scholar 

  40. H.J. Dai, N. D’Souza, and H.B. Dong: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 3430–38.

    Article  Google Scholar 

  41. H. Zhang and Q. Xu: Materials (Basel)., 2017, vol. 10, p. 1236.

    Article  Google Scholar 

  42. T. Ferreira, M. Hiner, C. Rueden, K. Miura, J. Eglinger, and B. Chef: tferr/Scripts: BAR 1.5.1, April 2017. https://doi.org/10.5281/ZENODO.495245.

  43. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, and K.W. Eliceriri: BMC Bioinform., 2017, vol. 18, pp. 1–26.

    Article  Google Scholar 

  44. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, and J.Y. Tinevez: Nat. Methods., 2012, vol. 9, pp. 676–82.

    Article  CAS  Google Scholar 

  45. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  CAS  Google Scholar 

  46. K. Kolatschek, M. Ellner, and B. Predel: J. Less Common Met., 1991, vol. 170, pp. 171–84.

    Article  Google Scholar 

  47. A. Meetsma, J.L. de Boer, and S. Smaalen: J. Solid State Chem., 1989, vol. 83, pp. 370–72.

    Article  CAS  Google Scholar 

  48. S. Grazulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail: J. Appl. Crystallogr., 2009, vol. 42, pp. 726–29.

    Article  CAS  Google Scholar 

  49. X. Wang, D. Wang, H. Zhang, Z. Tian, K. Du, J. Wang, L. Lou, and J. Zhang: Scripta Mater., 2016, vol. 116, pp. 44–48.

    Article  CAS  Google Scholar 

  50. C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, and D.M. Herlach: Acta Mater., 2011, vol. 59, pp. 3915–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The results in this work are the outcome of a collaboration of different research groups as part of the Project ‘Solidification along a Eutectic path in Ternary Alloys’ (SETA). The authors acknowledge funding from the National Aeronautics and Space Administration (NASA) under Grant Number NNX14AP82G within the Microgravity Research Program. Early EBSD on samples was carried out by Chad Parish at Oak Ridge National Laboratory through the ShaRE User Facility. The authors thank Samuel T. Small for polarized light microscopy investigations and post-processing of the EBSD data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Genau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 3, 2021; accepted December 23, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friess, J., Rayling, P., Hecht, U. et al. Microstructure Evolution and Grain Growth Competition in Directionally Solidified Ternary Al–Ag2Al–Al2Cu Eutectic. Metall Mater Trans A 53, 1294–1307 (2022). https://doi.org/10.1007/s11661-022-06590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06590-9

Navigation