Skip to main content
Log in

Using the Physically Based Constitutive Model and Processing Maps to Understand the Hot Deformation Behavior of 2304 Lean Duplex Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior of 2304 lean duplex stainless steel was investigated by means of processing maps and physically based constitutive modeling in the temperature range of 850 °C to 1050 °C and strain rate of 0.1 to 15 s−1. For all the processing maps developed for strains of 0.1 to 0.6, dynamic restoration mechanisms were efficient in preventing flow instability at low strain rates (1 to 4 s−1) in the studied temperature range. Hot deformation at medium strain rates of 5 to 7 s−1 results in the risk of flow instability. However, for typical industrial purposes, there is a possibility of hot working at higher strain rates (10 s−1 and above) at lower temperatures without the risk of instability by promoting dynamic recrystallization in the austenitic phase of the steel. The flow behavior of the steel can be accurately modeled by coupling the Estring-Mecking constitutive equation (for the work hardening and recovery region) with the Avrami model, which captures the dynamic recrystallization region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.I. Filho, J.M.D.A. Rollo, R. Silva, and G. Martinez: Mater. Lett., 2005, vol. 59, pp. 1192–94. https://doi.org/10.1016/j.matlet.2004.12.026.

    Article  CAS  Google Scholar 

  2. J.M. Cabrera, A. Mateo, L. Llanes, J.M. Prado, and M. Anglada: J. Mater. Process Technol., 2003, vol. 143–144, pp. 321–25. https://doi.org/10.1016/S0924-0136(03)00434-5.

    Article  CAS  Google Scholar 

  3. R. Badji, M. Bouabdallah, B. Bacroin, C. Kahloun, B. Belkessa, and H. Maza: Mater. Charact., 2008, vol. 59, pp. 447–53. https://doi.org/10.1016/j.matchar.2007.03.004.

    Article  CAS  Google Scholar 

  4. P. Cizek, B.P. Wynne, and W.M. Rainforth: J. Micros., 2006, vol. 222, pp. 85–96. https://doi.org/10.1111/j.1365-2818.2006.01576.x.

    Article  CAS  Google Scholar 

  5. P. Mao, K. Yang, and G. Su: Mater. Sci. Technol., 2003, vol. 19, pp. 379–83. https://doi.org/10.1179/026708302225004793.

    Article  CAS  Google Scholar 

  6. P. Cizek: Acta Mater., 2016, vol. 106, pp. 129–43. https://doi.org/10.1016/j.actamat.2016.01.012.

    Article  CAS  Google Scholar 

  7. C.M. Garzon and A.P. Tschiptschin: Mater. Sci. Eng. A., 2006, vol. 441, pp. 230–38. https://doi.org/10.1016/j.msea.2006.08.018.

    Article  CAS  Google Scholar 

  8. P. Mao, K. Yang, and G. Su: J. Mater. Sci. Technol., 2003, vol. 19, pp. 379–81.

    CAS  Google Scholar 

  9. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin: Acta Mater., 2009, vol. 57, pp. 2748–56. https://doi.org/10.1016/j.actamat.2009.02.033.

    Article  CAS  Google Scholar 

  10. A. Momeni, K. Dehghani, and G.R. Ebrahimi: J. Alloys Compd., 2011, vol. 509, pp. 9387–93. https://doi.org/10.1016/j.jallcom.2011.07.014.

    Article  CAS  Google Scholar 

  11. A. Momeni, K. Dehghani, and M.C. Poletti: Mater. Chem. Phys., 2013, vol. 139, pp. 747–55. https://doi.org/10.1016/j.matchemphys.2013.02.026.

    Article  CAS  Google Scholar 

  12. A. Quadfasel, J.A. Nietsch, M. Teller, and G. Hirt: Metal., 2021, vol. 11, pp. 1–19. https://doi.org/10.3390/met11081285.

    Article  CAS  Google Scholar 

  13. O. Balancin, W.A.M. Hoffman, and J.J. Jonas: Metall. Mater. Trans. A., 2001, vol. 31A, pp. 1353–64. https://doi.org/10.1007/s11661-000-0254-4.

    Article  Google Scholar 

  14. A. Momeni and K. Dehghani: Mater. Sci. Eng. A., 2011, vol. 528, pp. 1448–54. https://doi.org/10.1016/j.msea.2010.11.020.

    Article  CAS  Google Scholar 

  15. A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui: Mater. Des., 2009, vol. 30, pp. 1625–31. https://doi.org/10.1016/j.matdes.2008.07.031.

    Article  CAS  Google Scholar 

  16. Y.V.R.K. Prasad and T. Sesharyulu: Mater. Sci. Eng. A., 1998, vol. 243, pp. 832–88. https://doi.org/10.1016/S0921-5093(97)00782-X.

    Article  Google Scholar 

  17. S.V.S. Narayana Murty, W.S. Sarma, and B. Nageswara Rao: Metall. Mater. Trans. A., 1997, vol. 28A, pp. 1581–82. https://doi.org/10.1007/s11661-997-0219-y.

    Article  Google Scholar 

  18. Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps, 2nd ed. ASM International, Ohio, 2015.

    Google Scholar 

  19. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap: Mater. Sci. Technol., 2004, vol. 20, pp. 772–82. https://doi.org/10.1179/026708304225016671.

    Article  CAS  Google Scholar 

  20. A. Laasraoui and J.J. Jonas: Metall. Trans. A., 1991, vol. 22, pp. 1545–57. https://doi.org/10.1007/BF02667368.

    Article  Google Scholar 

  21. Y. Estrin and H. Mecking: Acta Metall. A., 1984, vol. 32, pp. 57–70. https://doi.org/10.1016/0001-6160(84)90202-5.

    Article  Google Scholar 

  22. Q. Guo-Zhang: In Tech., 2013, https://doi.org/10.5772/54285.

    Article  Google Scholar 

  23. S.B. Davenport, N.J. Silk, C.N. Sparks, and C.M. Sellars: Mater. Sci. Technol., 2000, vol. 16, pp. 539–46. https://doi.org/10.1179/026708300101508045.

    Article  CAS  Google Scholar 

  24. R.W. Evans and P.J. Scharning: Mater. Sci. Technol., 2001, vol. 17, pp. 995–1004. https://doi.org/10.1179/026708301101510843.

    Article  CAS  Google Scholar 

  25. Y.V.R.K. Prasad and K.P. Rao: Mater. Sci. Eng. A., 2005, vol. 31, pp. 141–50. https://doi.org/10.1016/j.msea.2004.08.049.

    Article  CAS  Google Scholar 

  26. Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang: Mater. Charact., 2011, vol. 62, pp. 198–203. https://doi.org/10.1016/j.matchar.2010.11.013.

    Article  CAS  Google Scholar 

  27. N. Haghdadi, D. Martin, and P. Hodgson: Mater. Des., 2016, vol. 106, pp. 420–27. https://doi.org/10.1016/j.matdes.2016.05.118.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Mintek for financial support through the DSI FMDN program, Columbus Stainless for the supply of materials and technical support and University of Pretoria for the use of the laboratories and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleary Bill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research data for this article

The research data for this article are available on the University of Pretoria Bahr Dilatometer machine and the SEM post-processing machine, available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of the W.H. relations

According to the modified representation of the Estrin-Mecking model:

$$ \theta \sigma = A - B\sigma^{2} $$
(A1)

Integrating equation results in the equation for the flow stress in the WH + DRV regime according to the Estrin-Mecking modification given by:

$$ \sigma^{{{\text{EM}}}} = \left[ {\sigma_{{{\text{sat}}}}^{2} + \left( {\sigma_{0}^{2} - \sigma_{{{\text{sat}}}}^{2} } \right){\text{exp}}\left( { - 2{\text{B}}\varepsilon } \right)} \right]^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}} $$
(A2)

where

$$ \sigma_{{{\text{sat}}}} = \sqrt{\frac{A}{B}} $$
(A3)

The constants in the above equation can be determined from the plot of product of the work hardening rate and stress, θσ, against the square of the stress, σ2. From this plot A is the y-intercept and B the slope of the linear approximation of the plot (Figure A1).

Fig. A1
figure 8

Plot of σθ against σ2 to determine the values of A and B at a strain rate of 15 s−1

Appendix 2: Derivation of the constants in the Avrami softening model

$$ X = 1 - \exp \left[ { - r\left( {\frac{\varepsilon }{{\varepsilon_{p} }}} \right)^{q} } \right] $$
(A4)

where the fractional softening

$$ X_{{\text{s}}} = \left( {\frac{{\sigma_{{{\text{sat}}}} - \sigma }}{{\sigma_{{{\text{sat}}}} - \sigma_{{{\text{ss}}}} }}} \right) $$
(A5)
$$ 1 - X = \exp \left[ { - r\left( {\frac{\varepsilon }{{\varepsilon_{p} }}} \right)^{q} } \right] $$
(A6)
$$ \ln (1 - X) = - r\left( {\frac{\varepsilon }{{\varepsilon_{p} }}} \right)^{q} $$
(A7)
$$ - \ln (1 - X) = r\left( {\frac{\varepsilon }{{\varepsilon_{p} }}} \right)^{q} $$
(A8)
$$ {\text{ln}}\left( { - \ln (1 - X} \right)) = {\text{ln}} r + q {\text{ln}} \left( {\varepsilon - \varepsilon_{p} } \right) $$
(A9)

Thus, the values of the constants r and q will be obtained from the plot of ln(−ln(1−X)) against ln(εεp) where ln r is the y-intercept and q the slope of the linear approximation of the corresponding plot. From the graph below ln r = 2.1875 and hence r = 8.9 and q = 1.7 (Figure A2).

Fig. A2
figure 9

Plot of ln(−ln(1−X)) against ln(εεp) to determine the values of r and q at a strain of 0.8, a strain rate of 15 s−1 and a temperature range of 850 °C to 1050 °C

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bill, O., Siyasiya, C. & Moema, J. Using the Physically Based Constitutive Model and Processing Maps to Understand the Hot Deformation Behavior of 2304 Lean Duplex Stainless Steel. Metall Mater Trans A 53, 1267–1275 (2022). https://doi.org/10.1007/s11661-021-06587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06587-w

Navigation