Skip to main content
Log in

Influence of Ti and Co/Ni Ratio on the Oxidation at 1200 °C of Chromium-Containing {Ni, Co}-Based Cast Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work investigates the possible influence that titanium may have on the oxidation of {nickel and/or cobalt}-based chromium-rich alloys. It starts with the elaboration by casting of a series of alloys from pure elements, with a base element ranging from nickel only to cobalt only. To magnify these possible effects of titanium and reach the atomic equivalence with the carbon present (0.4 wt pct C) in the alloys, 1.6 wt pct Ti was introduced in the chemical composition. To amplify the oxidation process, the oxidation tests carried out in laboratory air were run at the constant temperature of 1200 °C for a rather long time (170 hours). The surface states and cross-sections were characterized by XRD, electron microscopy and EDS analyses. The results demonstrate that all the alloys (except the nickel-free cobalt-based one) resisted oxidation rather well without catastrophic evolution due to titanium. The tested Ti content led to significant internal oxidation and to an external selective oxidation producing a thin layer stick on the outer side of the chromia scale. It is supposed that this outermost TiO2 layer may be beneficial for the oxidation behavior by the possible limitation of the deleterious over-consumption of chromium by chromia re-oxidation/volatilization. This will be later verified by further investigations combining thermogravimetry follow-up of the oxidation rate and analysis of chromium balance sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.T. Sims and W.C. Hagel: The Superalloys, Wiley, New York, 1972.

    Google Scholar 

  2. E.F. Bradley: Superalloys: A Technical Guide, ASM International, Metals Park, 1988.

    Google Scholar 

  3. P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, London, 1988.

    Google Scholar 

  4. D.J. Young: High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, 2008.

    Google Scholar 

  5. M.J. Donachie and S.J. Donachie: Superalloys—A Technical Guide, 2nd ed. ASM International, Materials Park, 2002.

    Book  Google Scholar 

  6. J. Chen, Q. Huo, J. Chen, Y. Wu, Q. Li, C. Xiao, and X. Hui: Mater. Sci. Eng. A., 2021, vol. 799, art. no. 140163.

  7. L. Ouyang, R. Luo, Y. Gui, Y. Cao, L. Chen, Y. Cui, H. Bian, K. Aoyagi, K. Yamanaka, and A. Chiba: Mater. Sci. Eng. A., 2020, vol. 788, art. no. 139638.

  8. P. Zhou, X. Gao, D. Song, Q. Liu, Y. Liu, and J. Cheng: J. Mater. Res., 2020, vol. 35, pp. 2737–45.

    Article  CAS  Google Scholar 

  9. Y. Zhai, L. Yang, F. Xue, Y. Chen, and S. Mao: Crystals, 2020, vol. 10, art. no. 908.

  10. Y.L. Ge and J.Y. Wang: Prakt. Metallogr., 1983, vol. 20, pp. 554–61.

    Article  CAS  Google Scholar 

  11. X.Z. Qin, J.T. Guo, C. Yuan, J.S. Hou, and H.Q. Ye: Mater. Lett., 2008, vol. 62, pp. 2275–8.

    Article  CAS  Google Scholar 

  12. A. Baldan and J.M. Benson: Z. Metall., 1990, vol. 81, pp. 446–51.

    CAS  Google Scholar 

  13. Z. Yu, L. Liu, X. Zhao, W. Zhang, J. Zhang, and H. Fu: Trans. Nonferrous Met. Soc. China., 2010, vol. 20, pp. 1835–40.

    Article  CAS  Google Scholar 

  14. S. Skolianos, T.Z. Kattamis, M. Chen, and B.V. Chambers: Mater. Sci. Eng. A., 1994, vol. 183, pp. 195–204.

    Article  CAS  Google Scholar 

  15. B. Zheng, T. Topping, J.E. Smugeresky, Y. Zhou, A. Biswas, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 568–73.

    Article  CAS  Google Scholar 

  16. M. Khair and P. Berthod: Calphad., 2019, vol. 65, pp. 34–41.

    Article  Google Scholar 

  17. J.L. Walter and H.E. Cline: Metall. Trans., 1973, vol. 4A, pp. 1775–84.

    Article  Google Scholar 

  18. D.A. Woodford: Metall. Trans. A., 1977, vol. 8A, pp. 2016–9.

    Article  CAS  Google Scholar 

  19. P. Berthod, S. Michon, L. Aranda, S. Mathieu, and J.C. Gachon: Calphad., 2003, vol. 27, pp. 353–9.

    Article  CAS  Google Scholar 

  20. I.L. Mogford and D. Hull: J. Iron Steel Inst., 1968, vol. 206, pp. 79–84.

    CAS  Google Scholar 

  21. P. Berthod, Y. Hamini, L. Aranda, and L. Héricher: Calphad., 2007, vol. 31, pp. 351–60.

    Article  CAS  Google Scholar 

  22. P. Berthod, J.P. Gomis, and G. Medjahdi: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 4168–85.

    Article  Google Scholar 

  23. P. Berthod and E. Conrath: Mater. High Temp., 2014, vol. 31, pp. 266–73.

    Article  CAS  Google Scholar 

  24. S.R. Shatynski: Oxid. Met., 1979, vol. 13, pp. 105–18.

    Article  CAS  Google Scholar 

  25. F.S. Yin, X.F. Sun, J.G. Li, H.R. Guan, and Z.Q. Hu: Mater. Lett., 2003, vol. 57, pp. 3377–80.

    Article  CAS  Google Scholar 

  26. D.L. Shu, S.G. Tian, N. Tian, J. Xie, and Y. Su: Mater. Sci. Eng. A., 2017, vol. 700, pp. 152–61.

    Article  CAS  Google Scholar 

  27. X.B. Hu, Y.L. Zhu, L.Z. Zhou, B. Wu, and X.L. Ma: Philos. Mag. Lett., 2015, vol. 95, pp. 237–44.

    Article  CAS  Google Scholar 

  28. X.B. Hu, X.Z. Qin, J.S. Hou, L.Z. Zhou, and X.L. Ma: Philos. Mag. Lett., 2017, vol. 97, pp. 43–9.

    Article  CAS  Google Scholar 

  29. S. Dodangeh, F. Shahri, and S.M. Abbasi: High Temp. Mater. Proc., 2015, vol. 34, pp. 821–6.

    Article  CAS  Google Scholar 

  30. W. Wang, R. Wang, A. Dong, G. Zhu, D. Wang, W. Zhou, W. Pan, D. Shu, and B. Sun: Mater. Sci. Eng. A., 2019, vol. 756, pp. 11–7.

    Article  CAS  Google Scholar 

  31. P. Kontis, D.M. Collins, A.J. Wilkinson, R.C. Reed, D. Raabe, and B. Gault: Scr. Mater., 2018, vol. 147, pp. 59–63.

    Article  CAS  Google Scholar 

  32. W. Sun, X. Qin, J. Guo, L. Lou, and L. Zhou: Mater. Des., 2015, vol. 69, pp. 81–8.

    Article  CAS  Google Scholar 

  33. Q. Li, S. Tian, H. Yu, N. Tian, Y. Su, and Y. Li: Mater. Sci. Eng. A., 2015, vol. 633, pp. 20–7.

    Article  CAS  Google Scholar 

  34. Y.-H. Lee, S. Ko, H. Park, D. Lee, S. Shin, I. Jo, S.-B. Lee, S.-K. Lee, Y. Kim, and S. Cho: Appl. Surf. Sci., 2019, vol. 480, pp. 951–5.

    Article  CAS  Google Scholar 

  35. H. Zhang, Y. Liu, X. Chen, H. Zhang, and Y. Li: J. Alloys Compd., 2017, vol. 727, pp. 410–8.

    Article  CAS  Google Scholar 

  36. X. Zhuang, Y. Tan, X. You, P. Li, L. Zhao, C. Cui, H. Zhang, and H. Cui: Vacuum., 2021, vol. 189, art. no. 110219.

  37. J. Cao, J. Zhang, R. Chen, Y. Ye, and Y. Hu: Mater. Charact., 2016, vol. 118, pp. 122–8.

    Article  CAS  Google Scholar 

  38. L. Chen, Y. Sun, L. Li, and X. Ren: Corrs. Sci., 2020, vol. 169, art. no. 108606.

Download references

Acknowledgments

The authors wish to thank Mr. Lionel Aranda and Ghouti Medjahdi for their technical help.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Berthod.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 20, 2021; accepted October 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthod, P., Ozouaki Wora, S.A. Influence of Ti and Co/Ni Ratio on the Oxidation at 1200 °C of Chromium-Containing {Ni, Co}-Based Cast Alloys. Metall Mater Trans A 53, 277–289 (2022). https://doi.org/10.1007/s11661-021-06519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06519-8

Navigation