Skip to main content
Log in

Effect of Powder Recycling on Environment-Assisted Fracture of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Environment-assisted fracture (EAF) behavior of Inconel718 (IN718) specimens made from virgin and recycled powder by laser powder bed fusion (L-PBF) process was investigated. To this, in situ slow strain rate tests (SSRTs) and fatigue crack propagation (FCP) tests were conducted in air and 3.5 pct NaCl/60 °C/Ecorr + 0.1 VSCE. Powder recycling up to 6 times did not affect the EAF sensitivity of L-PBF IN718 specimens in chloride-bearing environment, despite the marginal decrease in electrochemical resistance. Detailed fractographic and micrographic analyses were performed to identify the effect of powder recycling on static and dynamic EAF behaviors of L-PBF IN718 specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.J. Heiden, L.A. Deibler, J.M. Rodelas, J.R. Koepke, D.J. Tung, D.J. Saiz, and B.H. Jared: Addit. Manuf., 2019, vol. 25, pp. 84–103.

    CAS  Google Scholar 

  2. M. Renderos, F. Girot, A. Lamikiz, A. Torregaray, and N. Saintier: Phys. Proc., 2016, vol. 83, pp. 769–77.

    Article  CAS  Google Scholar 

  3. L.C. Ardila, F. Garciandia, J.B. González-Díaz, P. Álvarez, A. Echeverria, M.M. Petite, R. Deffley, and J. Ochoa: Phys. Procedia., 2014, vol. 56, pp. 99–107.

    Article  Google Scholar 

  4. F.J. Alamos, J. Schiltz, K. Kozlovsky, R. Attardo, C. Tomonto, T. Pelletiers, and S.R. Schmid: Int. J. Refract. Met. Hard Mater., 2020, vol. 91, p. 105273.

    Article  CAS  Google Scholar 

  5. Y. Cao, M. Delin, F. Kullenberg, and L. Nyborg: Surf. Interface Anal., 2020, vol. 52, pp. 1066–70.

    Article  CAS  Google Scholar 

  6. P.E. Carrion, A.S. Tehrani, N. Phan, and N. Shamsae: JOM., 2019, vol. 71, pp. 963–73.

    Article  CAS  Google Scholar 

  7. Y. Li and D. Gu: Mater. Des., 2014, vol. 63, pp. 856–67.

    Article  CAS  Google Scholar 

  8. L.C. Wei, L.E. Ehrlich, M.J. Powell-Palm, C. Montgomery, J. Beuth, and J.A. Malen: Addit. Manuf., 2018, vol. 21, pp. 201–8.

    CAS  Google Scholar 

  9. M. Cabrini, S. Lorenzi, C. Testa, F. Brevi, S. Biamino, P. Fino, D. Manfredi, G. Marchese, F. Calignano, and T. Pastore: Materials., 2019, vol. 12, pp. 1742–52.

    Article  CAS  Google Scholar 

  10. M. Renderos, A. Torregaray, E. Gutierrez-Orrantia, N. Saintier, and F. Girot: Mater. Charact., 2017, vol. 134, pp. 103–13.

    Article  CAS  Google Scholar 

  11. A. Strondl, O. Lyckfeldt, H. Brodin, and U. Ackelid: JOM., 2015, vol. 67, pp. 549–54.

    Article  CAS  Google Scholar 

  12. F. Ahmed, U. Ali, D. Sarker, E. Marzbanrad, K. Choi, Y. Mahmoodkhani, and E. Toyserkani: J. Mater. Process. Technol., 2020, vol. 278, p. 116522.

    Article  CAS  Google Scholar 

  13. M. Rafieazad, A. Chatterjee, and A.M. Nasiri: JOM., 2019, vol. 71, pp. 3241–52.

    Article  CAS  Google Scholar 

  14. V.V. Popov Jr., A.K. Demyanetz, A. Garkun, and M. Bamberger: Addit. Manuf., 2018, vol. 22, pp. 834–43.

    CAS  Google Scholar 

  15. L.N. Zhang and O.A. Ojo: J. Alloy. Compd., 2020, vol. 829, p. 154455.

    Article  CAS  Google Scholar 

  16. T. Chen, J. Nutter, J. Hawk, and X. Liu: Corrosion Sci., 2014, vol. 89, pp. 146–53.

    Article  CAS  Google Scholar 

  17. T. Sanviemvongsak, D. Monceaua, C. Desgrangesb, and B. Macquaire: Corrosion Sci., 2020, vol. 170, p. 108684.

    Article  CAS  Google Scholar 

  18. S. Ghosh, S. Yadav, and G. Das: Mater. Lett., 2008, vol. 62, pp. 17–8.

    Google Scholar 

  19. S. Luo, W. Huang, H. Yang, J. Yang, Z. Wang, and X. Zeng: Addit. Manuf., 2019, vol. 30, p. 100875.

    CAS  Google Scholar 

  20. C.K. Lin, W.C. Fan, and W.J. Tsai: Corrosion., 2002, vol. 58, pp. 904–11.

    Article  CAS  Google Scholar 

  21. X. Yang and J. Zhang: Mater. Sci. Eng., 2020, vol. 721, p. 012030.

    CAS  Google Scholar 

  22. J. Kolts: Superalloy 718–Metallurgy and Applications, E.A. Loria (Ed.), TMS, Warrendale, 1989, pp. 329–44.

  23. H. Choi, S. Kim, M. Goto, and S. Kim: Mater. Charact., 2021, vol. 171, p. 110818.

    Article  CAS  Google Scholar 

  24. ASTM International: Standard reference test method for making potentiodynamic anodic polarization measurements G5, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  25. ASTM International: Standard test method for measurement of fatigue crack growth rates E647, ASTM International, West Conshohocken, PA, 2002.

    Google Scholar 

  26. Q.B. Nguyen, M.L. Sharon Nai, Z. Zhu, C.N. Sun, J. Wei, and W. Zhou: Engineering., 2017, vol. 3, pp. 695–700.

    Article  CAS  Google Scholar 

  27. W.T. Tsai and S.L. Chou: Corrosion Sci., 2002, vol. 42, pp. 1741–62.

    Article  Google Scholar 

  28. J. Conglecton and W. Yang: Corrosion Sci., 1995, vol. 37, pp. 429–44.

    Article  Google Scholar 

  29. H. Lee, Y. Kim, Y. Jeong, and S. Kim: Corrosion Sci., 2012, vol. 55, pp. 10–9.

    Article  CAS  Google Scholar 

  30. H. Gruber, M. Henriksson, E. Hryha, and L. Nyborg: Metall. Mater. Tran. A., 2019, vol. 50A, pp. 4410–22.

    Article  Google Scholar 

  31. H. Gruber, C. Luchian, E. Hryha, and L. Nyborg: Metall. Mater. Tran. A., 2020, vol. 51A, pp. 2430–43.

    Article  Google Scholar 

  32. Y. Yoon, H. Ha, T. Lee, and S. Kim: Corrosion Sci., 2014, vol. 80, pp. 28–36.

    Article  CAS  Google Scholar 

  33. D. Jeong, J. Park, S. Ahn, H. Sung, Y. Kwon, and S. Kim: Met. Mater. Int., 2018, vol. 24, pp. 101–11.

    Article  CAS  Google Scholar 

  34. D. Jeong, W. Jung, Y. Kim, M. Goto, and S. Kim: Met. Mater. Int., 2015, vol. 21, pp. 785–92.

    Article  CAS  Google Scholar 

  35. D. Jeong, Y. Kwon, M. Goto, and S. Kim: Met. Mater. Int., 2016, vol. 22, pp. 747–54.

    Article  Google Scholar 

  36. H. Erhard and K.H. Zum-Gahr: Acta Metall., 1976, vol. 24, pp. 581–92.

    Article  Google Scholar 

  37. S. Kim, D. Jeong, and H. Sung: Met. Mater. Int., 2018, vol. 24, pp. 1–14.

    Article  CAS  Google Scholar 

  38. S. Kim, H. Choi, J. Lee, and S. Kim: Int. J. Fatigue., 2020, vol. 140, p. 105802.

    Article  CAS  Google Scholar 

  39. N. Nanninga, A. Slifka, Y. Levy, and C. White: J. Res. Natl. Inst. Stand. Technol., 2010, vol. 115, pp. 437–52.

    Article  CAS  Google Scholar 

  40. Y. Kondo, M. Kubota, and K. Shimada: Eng. Fract. Mech., 2010, vol. 77, pp. 1963–74.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering Research Center (ERC) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A5A6075959). This work was also supported by the Industrial Technology Innovation Program (10067503, Development of Manufacturing Technology for Aerospace Grade Ti-6Al-4V Sheet and Hot Forming) funded by the Ministry of Trade, industry & Energy (MOTIE, Korea). This work was also supported by the Industrial Technology Innovation Program (20009993) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and the Technology Innovation Program (20010676) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 10 March 2021; accepted 25 October 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Goto, M. & Kim, S. Effect of Powder Recycling on Environment-Assisted Fracture of Inconel 718 Alloy Fabricated by Laser Powder Bed Fusion. Metall Mater Trans A 53, 211–224 (2022). https://doi.org/10.1007/s11661-021-06514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06514-z

Navigation