Skip to main content
Log in

Oxidation Resistance and Evolution of Multi-layered Oxide Scale During Isothermal and Cyclic Exposure of ZrB2–SiC–LaB6 Composites at 1300 °C to 1500 °C

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of LaB6 (7, 10, and 14 vol pct) addition on oxidation behavior of spark plasma-sintered ZrB2–20 vol pct SiC composites involving heating under non-isothermal condition till 1400 °C, and isothermal and cyclic exposures at 1300 °C to 1500 °C have been examined. The mass gain of the composite with 14 vol pct LaB6 is found as the highest during non-isothermal oxidation, whereas it appears as the least on isothermal exposure for 24 hours at 1400 °C or 1500 °C. The mass gain after 24 cycles of 1-hour exposure at 1300 °C to 1500 °C is found to be lower than that recorded under isothermal condition for all the composites, with the difference decreasing with LaB6 content. The oxidation exponent (n) is found to decrease to near parabolic rate law with the increase in cyclic exposure temperature. The parabolic rate constant (kp) is found to decrease with the increase in LaB6 content after a few cycles of exposure at all the investigated temperatures. The oxide scales formed on isothermal exposure at 1400 °C or 1500 °C have shown a thin La2Si2O7 layer with borosilicate glass (BSG) as the outer layer, followed by layers containing BSG along with coarse and fine ZrO2, and a SiC-depleted ZrB2 layer. The oxide scales formed during cyclic exposure contain an outer compact layer comprising BSG, La2Si2O7, and ZrSiO4, followed by ZrO2 + BSG. Additionally, a SiC-depleted layer is found at the oxide–composite interface on cyclic exposure at 1500 °C for 24 hours, and at 1400 °C for 100 hours. The outer compact layer appears to have a critical role in protection against oxidation, with kp decreasing with the increase in its thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A.G. Fallis: Handbook of Ceramic Composites, Kluwer Academic Publishers, Boston, 2013.

    Google Scholar 

  2. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, and J.A. Salem: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 2757–67.

    CAS  Google Scholar 

  3. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1347–64.

    CAS  Google Scholar 

  4. T.A. Jackson, D.R. Eklund, and A.J. Fink: J. Mater. Sci., 2004, vol. 39, pp. 5905–13.

    CAS  Google Scholar 

  5. D.M. Van Wie, D.G. Drewry, D.E. King, and C.M. Hudson: J. Mater. Sci., 2004, vol. 39, pp. 5915–24.

    Google Scholar 

  6. A. Paul, J. Binner, and B. Vaidhyanathan: in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y. Zhou, eds., John Wiley & Sons, Inc., Hoboken, New Jersey, 2014, pp. 144–66.

  7. A. Kumar, D. Rajdev, and D.L. Douglass: J. Am. Ceram. Soc., 1972, vol. 55, pp. 439–45.

    CAS  Google Scholar 

  8. T.A. Parthasarathy, R.A. Rapp, M. Opeka, and R.J. Kerans: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1079–86.

    CAS  Google Scholar 

  9. E. Zhang and D.P. Thompson: Compos. Part A Appl. Sci. Manuf., 1997, vol. 28, pp. 581–6.

    CAS  Google Scholar 

  10. W.G. Fahrenholtz and G.E. Hilmas: Int. Mater. Rev., 2012, vol. 57, pp. 61–72.

    CAS  Google Scholar 

  11. E. Eakins, D.D. Jayaseelan, and W.E. Lee: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, vol. 42, pp. 878–87.

  12. L. Silvestroni, D. Sciti, F. Monteverde, K. Stricker, and H.J. Kleebe: J. Am. Ceram. Soc., 2017, vol. 100, pp. 1760–72.

    CAS  Google Scholar 

  13. S. Guo, T. Mizuguchi, M. Ikegami, and Y. Kagawa: Ceram. Int., 2011, vol. 37, pp. 585–91.

    CAS  Google Scholar 

  14. I.G. Talmy, J.A. Zaykoski, and M.M. Opeka: J. Am. Ceram. Soc., 2008, vol. 91, pp. 2250–7.

    CAS  Google Scholar 

  15. B.R. Golla, A. Mukhopadhyay, B. Basu, and S.K. Thimmappa: Prog. Mater. Sci., 2020, vol. 111, pp. 100651.

  16. M. Mallik, A.J. Kailath, K.K. Ray, and R. Mitra: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 559–72.

    CAS  Google Scholar 

  17. W.B. Han, P. Hu, X.H. Zhang, J.C. Han, and S.H. Meng: J. Am. Ceram. Soc., 2008, vol. 91, pp. 3328–34.

    CAS  Google Scholar 

  18. M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, and S.J. Causey: J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2405–14.

    CAS  Google Scholar 

  19. R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, and K. Goto: J. Mater. Sci., 2018, vol. 53, pp. 14885–906.

    CAS  Google Scholar 

  20. J. Li, T.J. Lenosky, C.J. Först, and S. Yip: J. Am. Ceram. Soc., 2008, vol. 91, pp. 1475–80.

    CAS  Google Scholar 

  21. W.G. Fahrenholtz: J. Am. Ceram. Soc., 2007, vol. 90, pp. 143–8.

    CAS  Google Scholar 

  22. M. Mallik, K.K. Ray, and R. Mitra: J. Eur. Ceram. Soc., 2011, vol. 31, pp. 199–215.

    CAS  Google Scholar 

  23. E. Zapata-Solvas, D.D. Jayaseelan, P.M. Brown, and W.E. Lee: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 3535–48.

    CAS  Google Scholar 

  24. D.D. Jayaseelan, E. Zapata-Solvas, P. Brown, and W.E. Lee: J. Am. Ceram. Soc., 2012, vol. 95, pp. 1247–54.

    CAS  Google Scholar 

  25. X. Hong Zhang, P. Hu, J. Cai Han, L. Xu, and S. He Meng: Scr. Mater., 2007, vol. 57, pp. 1036–9.

    Google Scholar 

  26. F. Monteverde, D. Alfano, and R. Savino: Corros. Sci., 2013, vol. 75, pp. 443–53.

    CAS  Google Scholar 

  27. M.M. Opeka, I.G. Talmy, and J.A. Zaykoski: J. Mater. Sci., 2004, vol. 39, pp. 5887–904.

    CAS  Google Scholar 

  28. P. Hu, X.H. Zhang, J.C. Han, X.G. Luo, and S.Y. Du: J. Am. Ceram. Soc., 2010, vol. 93, pp. 345–9.

    CAS  Google Scholar 

  29. S.K. Kashyap, A. Kumar, and R. Mitra: J. Eur. Ceram. Soc., 2020, vol. 40, pp. 4997–5011.

    CAS  Google Scholar 

  30. S.K. Kashyap and R. Mitra: Ceram. Int., 2020, vol. 46, pp. 5028–36.

    CAS  Google Scholar 

  31. S.K. Kashyap and R. Mitra: J. Eur. Ceram. Soc., 2019, vol. 39, pp. 2782–93.

    CAS  Google Scholar 

  32. R.F. Voitovich and E.A. Pugach: Sov. Powder Metall. Met. Ceram., 1973, vol. 12, pp. 145–8.

    Google Scholar 

  33. I. Barin: Thermochemical Data of Pure Substances, vol. 55, 1997.

  34. M. Bolech, E.H.P. Cordfunke, A.C.G. van Genderen, R.R. van der Laan, F.J.J.G. Janssen, and J.C. van Miltenburg: Thermochim. Acta., 1996, vol. 284, pp. 253–61.

    CAS  Google Scholar 

  35. K.T. Jacob, N. Dasgupta, and Y. Waseda: J. Am. Ceram. Soc., 2005, vol. 81, pp. 1926–30.

    Google Scholar 

  36. R. Mitra: Int. Mater. Rev., 2006, vol. 51, pp. 13–64.

    CAS  Google Scholar 

  37. R. Mitra and V. V. Rama Rao: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, vol. 29, pp. 1665–75.

  38. R. Mitra, M. Mallik, and S. Kashyap: in Handbook of Advanced Ceramics and Composites: Defense, Security, Aerospace and Energy Applications, Y. Mahajan and J. Roy, eds., Springer International Publishing, Cham, 2019, pp. 1–35.

  39. A.K. Kuriakose and J.L. Margrave: J. Electrochem. Soc., 1964, vol. 111, pp. 827–31.

    CAS  Google Scholar 

  40. R. Gao, G. Min, H. Yu, S.Q. Zheng, Q. Lu, J. Han, and W. Wang: Ceram. Int., 2005, vol. 31, pp. 15–9.

    CAS  Google Scholar 

  41. C.H. Wen, T.M. Wu, and W.C.J. Wei: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 3235–43.

    CAS  Google Scholar 

  42. S.K. Kashyap and R. Mitra: Philos. Mag. Lett., 2021, https://doi.org/10.1080/09500839.2021.1912426.

    Article  Google Scholar 

  43. I.A. Levitskii, M.V. Dyadenko, and L.F. Papko: Glas. Ceram. (English Transl. Steklo i Keramika), 2012, vol. 68, pp. 315–8.

  44. K.S. Cissel and E. Opila: J. Am. Ceram. Soc., 2018, vol. 101, pp. 1765–79.

    CAS  Google Scholar 

  45. T.A. Parthasarathy, R.A. Rapp, M. Opeka, and R.J. Kerans: Acta Mater., 2007, vol. 55, pp. 5999–6010.

    CAS  Google Scholar 

  46. S.N. Karlsdottir and J.W. Halloran: J. Am. Ceram. Soc., 2008, vol. 91, pp. 3652–8.

    CAS  Google Scholar 

  47. H. Trégouët, D. Caurant, O. Majérus, T. Charpentier, T. Lerouge, and L. Cormier: J. Non. Cryst. Solids., 2017, vol. 476, pp. 158–72.

    Google Scholar 

  48. W. Xie, Q. Fu, C. Cheng, G. Zhang, N. Yan, and Z. Wang: J. Am. Ceram. Soc., 2020, vol. 103, pp. 614–21.

    CAS  Google Scholar 

  49. A.C. Fox and T.W. Clyne: Surf. Coat. Technol., 2004, vol. 184, pp. 311–21.

    CAS  Google Scholar 

  50. X. Mei Hou, K.C. Chou, and F. Shen Li: Ceram. Int., 2009, vol. 35, pp. 603–7.

    Google Scholar 

  51. D.L. Porter, A.G. Evans, and A.H. Heuer: Acta Metall., 1979, vol. 27, pp. 1649–54.

    CAS  Google Scholar 

  52. J.B. Wachtman, W.R. Cannon, and M.J. Matthewson: in Mechanical Properties of Ceramics, 2009, pp. 227–47.

  53. A.K. Varshneya: in Fundamentals of Inorganic Glasses, Elsevier, 1994, pp. 211–24.

  54. R.A. Cutler: in Engineered Materials Handbook, S.J. Schneider, ed., Materials Park, OH: ASM International, 1992.

  55. K. Fukuda, T. Asaka, and T. Uchida: J. Solid State Chem., 2012, vol. 194, pp. 157–61.

    CAS  Google Scholar 

  56. W. Mi-tang and C. Jin-shu: J. Alloys Compd., 2010, vol. 504, pp. 273–6.

    Google Scholar 

  57. Y. Ren, Y. Qian, J. Xu, J. Zuo, and M. Li: Mater. Chem. Phys., 2020, vol. 251, p. 123157.

Download references

Acknowledgments

Technical assistance received from Mr. B. Santu Mudliyar and Mr. Mithun Das, Staff members of Central Research Facility, IIT Kharagpur for characterization of specimens, is gratefully acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Kashyap.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 1, 2021; accepted October 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S.K., Sala, K. & Mitra, R. Oxidation Resistance and Evolution of Multi-layered Oxide Scale During Isothermal and Cyclic Exposure of ZrB2–SiC–LaB6 Composites at 1300 °C to 1500 °C. Metall Mater Trans A 53, 147–171 (2022). https://doi.org/10.1007/s11661-021-06501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06501-4

Navigation