Skip to main content
Log in

Determination of Activation Energy and Prediction of Long-Term Strength of Creep Rupture for Alloy Inconel 740/740H: A Method Based on a New Tensile Creep Rupture Model

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The activation energy of creep rupture is determined based on a new tensile creep rupture model and then applied to rationalize the creep rupture data measured over a wide range of stresses and temperatures, which enabled the predictions of 100,000 hours and 200,000 hours creep rupture strengths to be made at different temperatures in the range of 650 °C to 875 °C for alloy Inconel 740/740H. The reliability of such long-term predictions is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Render, M.L. Santella, X. Chen, P.F. Tortorelli, and V. Cedro III.: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 2601–12.

    Article  Google Scholar 

  2. J.P. Shingledecker, N.D. Evans, and G.M. Pharr: Mater. Sci. Eng. A., 2013, vol. 578, pp. 277–86.

    Article  CAS  Google Scholar 

  3. J.P. Shingledecker and G.M. Pharr: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 1902–10.

    Article  Google Scholar 

  4. K.A. Unocic, J.P. Shingledecker, and P.F. Tortorelli: JOM., 2014, vol. 66(12), pp. 2535–42.

    Article  CAS  Google Scholar 

  5. C.C. Jiang, Z. Dong, X.L. Song, J. Jia, and Z.D. Xiang: J. Mater. Res. Technol., 2020, vol. 9(3), pp. 5542–8.

    Article  CAS  Google Scholar 

  6. A.M. Brown and M.F. Ashby: Scripta Metall., 1980, vol. 14, pp. 1297–302.

    Article  CAS  Google Scholar 

  7. F.C. Monkman and N.J. Grant: Proc. ASTM., 1956, vol. 56, pp. 593–620.

    Google Scholar 

  8. H.P. Yao, Y.R. Zhao, X.L. Song, J. Jia, and Z.D. Xiang: Eur. J. Mech. A., 2019, vol. 73, pp. 57–66.

    Article  Google Scholar 

  9. M. Yang, Q. Wang, X.L. Song, J. Jia, and Z.D. Xiang: Int. J. Mater. Res., 2016, vol. 107, pp. 133–8.

    Article  CAS  Google Scholar 

  10. B. Wilshire and P.J. Scharning: Int. Mater. Rev., 2008, vol. 53, pp. 91–104.

    Article  CAS  Google Scholar 

  11. M.F. Ashby: Acta Metall., 1972, vol. 20, pp. 887–987.

    Article  CAS  Google Scholar 

  12. P.C. Yi, C.C. Jiang, Z. Dong, X.L. Song, J. Jia, and Z.D. Xiang: Metall. Mater. Trans. A., 2019, vol. 50, pp. 3452–7.

    Article  CAS  Google Scholar 

  13. J. Gao, P.C. Yi, X.L. Song, J. Jia, and Z.D. Xiang: Mater. High Temp., 2019, vol. 36, pp. 304–13.

    Article  Google Scholar 

  14. Y. Zhao, H. Yao, X. Song, J. Jia, and Z. Xiang: Met. Mater. Int., 2018, vol. 24(1), pp. 51–9.

    Article  CAS  Google Scholar 

  15. Y.R. Zhao, H.P. Yao, X.L. Song, J. Jia, and Z.D. Xiang: J. Alloys Compd., 2017, vol. 726, pp. 1246–54.

    Article  CAS  Google Scholar 

  16. Q. Wang, M. Yang, X.L. Song, J. Jia, and Z.D. Xiang: Metall. Mater. Trans. A., 2016, vol. 47A(7), pp. 3479–87.

    Article  Google Scholar 

  17. Y. Chong, Z. Liu, A. Godfrey, L. Wei, and W. Yuqing: Mater. Sci. Eng. A., 2014, vol. 589, pp. 153–64.

    Article  Google Scholar 

  18. S. Zhao, X. Xie, G.D. Smith, and S.J. Patel: Mater. Sci. Eng. A., 2003, vol. 355, pp. 96–105.

    Article  Google Scholar 

Download references

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 25 June 2021; accepted 1 October 2021.

Appendix

Appendix

Equation [3] can be simply rearranged into following form:

$$ \left[ {\left( {r{-}{ 1}} \right)/r} \right] \, = \, {-}k_{{1}} \left[ {t_{{\text{r}}} {\text{exp}}\left( {{-}Q_{{\text{c}}}^ */\left( {RT} \right)} \right)} \right]^{u} $$
(A1)

where r = σ/σTS, k1 = exp(–A*/n*) and u = 1/n*. Now, when r → 1, i.e., when σσTS, the following relationship becomes valid

$$ \left[ {\left( {r{-}{ 1}} \right)/r} \right] \, \approx {\text{ ln}}r $$
(A2)

Thus, lnr = lnσ/σTS ≈ –k1[trexp(-Qc*/(RT))]u, or σ/σTS ≈ exp{–k1[trexp(-Qc*/(RT))]u}, which is the Wilshire model. Therefore, when σσTS, the new creep rupture model, i.e., Eq. [3], approximately equals the Wilshire model.

Fig. 1
figure 1

Plot of lntr versus lnσ based on the conventional creep rupture model

Fig. 2
figure 2

Plot of tensile strength σTS versus temperature

Fig. 3
figure 3

Plot of lntr measured at three almost the same constant stress ratio σ/σTS values versus 1/T. (The numeric figure near each datum point is the value of stress ratio σ/σTS under which that datum point is measured.)

Fig. 4
figure 4

Plot of lntr-1exp[Qc*/(RT)] versus ln[σ/(σTSσ)] for all the available experimental data

Fig. 5
figure 5

Comparison between the predictions (solid curves) based on the new creep rupture model and experimental data (data points)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Dong, Z., Song, X.L. et al. Determination of Activation Energy and Prediction of Long-Term Strength of Creep Rupture for Alloy Inconel 740/740H: A Method Based on a New Tensile Creep Rupture Model. Metall Mater Trans A 53, 1–5 (2022). https://doi.org/10.1007/s11661-021-06484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06484-2

Navigation