Skip to main content
Log in

Influence of Sulfur Content on Penetration Depth in TIG Welding for High Manganese Stainless Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

TIG welding of high manganese stainless steels was conducted with different sulfur contents of 5 and 20 ppm. The penetration depth of the welding bead clearly increased even when the sulfur content of the sample was only very slightly increased from 5 to 20 ppm. In situ observation of the surface of the molten pool revealed that the increase in penetration depth of the welding bead could be attributed to an elevation of the average temperature at the center of the molten pool from 2070 to 2200 K due to the generation of an inward fluid flow in the pool. The results of precise measurements of the surface tension of molten high manganese stainless steels using the electromagnetic levitation (EML) technique, thoroughly explained that the inward flow in the molten pool of the sample containing a sulfur content of 20 ppm was induced by Marangoni convection driven by the boomerang shape temperature dependence of the surface tension of the molten sample. The experimental results of the variations in the temperature distribution and the fluid flow direction in the molten pool depending on the sulfur content were reproduced well by a numerical calculation considering the four dominant driving forces of plasma jet, buoyancy, electromagnetic forces, and Marangoni convection, which indicated that the fluid flow direction was dominantly controlled by Marangoni convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Hamada, Y. Nunoya, T. Isono, Y. Takahashi, K. Kawano, T. Saito, M. Oshikiri, Y. Uno, N. Koizumi, H. Nakajima, H. Matsuda, Y. Yano, A. Devred, P. Libeyre, D. Bessette, and M.C. Jewwel: IEEE Trans. Appl. Supercond., 2012, vol. 22(3), pp. 4203404–4203404.

    Article  Google Scholar 

  2. K. Hamada, Y. Takahashi, T. Suwa: TEION KOGAKU (Cryogenics and Superconductivity Society of Japan), 2019, Vol. 54, No. 6, pp. 437–44.(Japanese)

  3. T. Saito, K. Kawano, T. Yamazaki, H. Ozeki, T. Isono, K. Hamada, A. Devred, and A. Vostner: Phys. Procedia., 2015, vol. 67, pp. 1016–21.

    Article  CAS  Google Scholar 

  4. N. Sekiguchi, Y. Yano, Y. Kisaka, Y. Yoshimura, Y. Adachi, T. Yamaguchi: Nippon Steel & Sumikin Engineering Co., Ltd. technical review, 2019, Vol.10, pp. 10-19. (Japanese)

  5. M. Vasudevan: J. Mater. Eng. Perform., 2017, vol. 26(3), pp. 1325–36.

    Article  CAS  Google Scholar 

  6. S. Lu, H. Fujii, H. Sugiyama, M. Tanaka, and K. Nogi: Mater. Trans., 2002, vol. 43(11), pp. 2926–31.

    Article  CAS  Google Scholar 

  7. H. Fujii, T. Sato, S. Lu, and K. Nogi: Mater. Sci. Eng., A., 2008, vol. 495, pp. 296–303.

    Article  Google Scholar 

  8. D.K. Aidun and S.A. Martin: J. Mater. Eng. Perform., 1997, vol. 6(4), pp. 496–502.

    Article  CAS  Google Scholar 

  9. T. N. Le, Y. L. Lo: Mater. Des., 2019, Vol. 179, 107866.

  10. M. Tanaka, S. Tashiro, T. Satoh, A.B. Murphy, and J.J. Lowke: Sci. Technol. Weld. Joining., 2008, vol. 13(3), pp. 225–31.

    Article  CAS  Google Scholar 

  11. P.R. Scheller: Steel Res.., 2001, vol. 72(3), pp. 76–80.

    Article  CAS  Google Scholar 

  12. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1990, vol. 35(1), pp. 185–216.

    Article  CAS  Google Scholar 

  13. S.B. Mamat, S. Tashiro, M. Tanaka, M. Yusoff: Journal of Physics D: Applied Physics, 2018, Vol. 51, No. 13, 135206.

  14. S. Ozawa, K. Morohoshi, T. Hibiya, H. Fukuyama: Journal of Applied Physics, 2010, Vol. 107, No. 1, 014910.

  15. S. Ozawa, Y. Kawanobe, K. Kuribayashi, T. Nagasawa: International Journal of Microgravity Science and Application, 2016, No. 33, Vol. 2, 330214.

  16. Lord. Rayleigh, Proc. R. Soc. London, 1879, Vol. 29, No. 71.

  17. B.L. Cummings and D.A. Blackburn: J. Fluid Mech., 1991, vol. 224, pp. 395–416.

    Article  Google Scholar 

  18. S. Ozawa, T. Koda, M. Adachi, K. Morohoshi, J. Watanabe, and T. Hibiya: Journal of Applied Physics, 2009, Vol. 106, 034907.

  19. I. Egry, H. Giffard, and S. Schneider: Meas. Sci. Technol., 2005, vol. 16(2), pp. 426–31.

    Article  CAS  Google Scholar 

  20. M. Beutl, G. Pottlacher, and H. Jäger: Int. J. Thermophys., 1994, vol. 15(6), pp. 1323–31.

    Article  CAS  Google Scholar 

  21. S. Tashiro, S. Miki, A. B. Murphy, M. Tanaka, Y. Kisaka, F. Kimura, T. Suwa. Y. Takahashi: Plasma Chemistry and Plasma Processing, (under review)

  22. ISO standard, 1995, Guide to the Expression of Uncertainty in measurement.

Download references

Acknowledgment

One of the authors (SO) acknowledges the support of the JSPS KAKENHI 20H02453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kisaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on 29 October 2021; accepted on 21 September 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisaka, Y., Miki, S., Sekiguchi, N. et al. Influence of Sulfur Content on Penetration Depth in TIG Welding for High Manganese Stainless Steels. Metall Mater Trans A 52, 5293–5299 (2021). https://doi.org/10.1007/s11661-021-06468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06468-2

Navigation