Skip to main content
Log in

First Principles Prediction of the Al-Li Phase Diagram

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The phase diagram of the Al-Li system was determined by means of first principles calculations in combination with the cluster expansion formalism and statistical mechanics. The ground state phases were determined from first principles calculations of fcc and bcc configurations in the whole compositional range, while the phase transitions as a function of temperature were ascertained from the thermodynamic grand potential and the Gibbs free energies of the phases. Overall, the calculated phase diagram was in good agreement with the currently accepted experimental phase diagram, but the simulations provided new insights that are important to optimize microstructure of these alloys by means of heat treatments. In particular, the structure of the potential GP zones, made up of Al0.5Li0.5 (001) monolayers embedded in Al matrix, was identified. It was found that Al3Li is a stable phase although the energy barrier for the transformation of Al3Li into AlLi is very small (a few meV) and can be overcome by thermal vibrations. Moreover, bcc AlLi was found to be formed by martensitic transformation of fcc configurations and Al3Li precipitates stand for favorable sites for the nucleation of AlLi because they contain the basic blocks of such fcc ordering. Finally, polynomial expressions of the Gibbs free energies of the different phases as a function of temperature and composition were given, so they can be used in mesoscale simulations of precipitation in Al-Li alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.A. Starke Jr., T.H. Sanders Jr., and I.G. Palmer: JOM., 1981, vol. 33, pp. 24–33. .

    Article  CAS  Google Scholar 

  2. R.J. Rioja and J. Liu: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 3325–37. .

    Article  CAS  Google Scholar 

  3. O. Grushko, B. Ovsyannikov, and V. Ovchinnokov: Aluminum-Lithium Alloys: Process Metallurgy, Physical Metallurgy, and Welding. 1st ed. CRC Press, Boca Raton, 2016.

    Book  Google Scholar 

  4. L. del Castillo, H.M. Hu, E.J. Lavernia, and Y. Wu: Metall. Mater. Trans. A., 1999, vol. 30A, pp. 1381–9. .

    Article  Google Scholar 

  5. B. Noble, S.J. Harris, and K. Dinsdale: Met. Sci., 1982, vol. 16, pp. 425–30. .

    Article  CAS  Google Scholar 

  6. K.S. Ghosh, K. Das, and U.K. Chatterjee: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 3477–87. .

    Article  CAS  Google Scholar 

  7. E. Nembach: Particle Strengthening of Metals and Alloys. 1st ed. Wiley, New York, 1996.

    Google Scholar 

  8. N. EswaraPrasad and T.R. Ramachandran: Phase Diagrams and Phase Reactions in Al–Li Alloys. 1st ed. Elsevier Science, Boston, 2014, pp. 61–97.

    Google Scholar 

  9. J.M. Papazian, C. Sigli, and J.M. Sanche: Scripta Metal., 1986, vol. 20, pp. 201–6. .

    Article  CAS  Google Scholar 

  10. R. Nozato and G. Nakai: Mater. Trans., 1977, vol. 18, pp. 679–87. .

    CAS  Google Scholar 

  11. S.Q. Wang, M. Schneider, H.Q. Ye, and G. Gottstein: Scripta Mater., 2004, vol. 51, pp. 665–9. .

    Article  CAS  Google Scholar 

  12. A. Rodríguez-Veiga, B. Bellón, I. Papadimitriou, G. Esteban-Manzanares, I. Sabirov, and J. LLorca: J. Alloys Compd., 2018, vol. 757, pp. 504–19. .

    Article  CAS  Google Scholar 

  13. T. Sato, Y. Kojima, and T. Takahashi: Metall. Mater. A., 1982, vol. 13A, pp. 1373–8. .

    Google Scholar 

  14. M. Bouchear, D. Hamana, and T. Laoui: Philos. Mag. A., 1996, vol. 73A, pp. 1733–40. .

    Article  Google Scholar 

  15. M.A. Floriano, A. Triolo, E. Caponetti, and R. Triolo: J. Mol. Struct., 1996, vol. 383, pp. 277–82. .

    Article  CAS  Google Scholar 

  16. K. Osamura and N. Okuda: J. Phys. Colloque., 1993, vol. 48, pp. 311–6. .

    Google Scholar 

  17. V. Radmilovic, A.G. Fox, and G. Thomas: Acta. Metall., 1989, vol. 37, pp. 2385–94. .

    Article  CAS  Google Scholar 

  18. A.G. Khachaturyan, T.F. Lindsey, and J.W. Morris: Metall. Trans. A., 1988, vol. 19A, pp. 249–58. .

    Article  CAS  Google Scholar 

  19. W.A. Soffa and D.E. Laughlin: Acta. Metall., 1989, vol. 37, pp. 3019–28. .

    Article  CAS  Google Scholar 

  20. S.C. Jha, T.H. Sanders Jr., and M.A. Dayananda: Acta. Metall., 1987, vol. 35, pp. 473–82. .

    Article  CAS  Google Scholar 

  21. C.S. Lee, D. Li, N.J. Kim, and K.J. Park: Metall. Mater. Trans. A., 1997, vol. 28A, pp. 1089–93. .

    Article  CAS  Google Scholar 

  22. T.V. Shchegoleva and O.F. Rybalko: Phys. Met. Metallogr., 1976, vol. 42, pp. 82–91. .

    Google Scholar 

  23. D. Venables, L. Christodoulou, and J.R. Pickens: Scripta Metall., 1983, vol. 17, pp. 1263–8. .

    Article  CAS  Google Scholar 

  24. T.H. Sanders, E.A. Starke (Eds.), Proceedings of the First International Conference on Aluminum-Lithium Alloys I, The Metallurgical Society of AIME, Warrendale, PA (1981), pp. 89-100.

  25. F. W. Gayle, J. B. Vander Sande, A. J. McAlister: Bull. Alloy. Phase. Diagr., 1984, vol. 5, pp. 19-20.

  26. B. Hallstedt and O. Kim: Int. J. Mater. Res., 2007, vol. 98, pp. 961–9. .

    Article  CAS  Google Scholar 

  27. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics, the Calphad Method. 1st ed. Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  28. A. van de Walle and G. Ceder: J. Phase Equilib., 2002, vol. 23, pp. 348–59. .

    Article  Google Scholar 

  29. N.A. Zarkevich and D.D. Johnson: Phys. Rev. B., 2003, vol. 67, p. 064104. .

    Article  CAS  Google Scholar 

  30. J. Teeriniemi, J. Huisman, P. Taskinen, and K. Laasonen: J. Alloys Compd., 2015, vol. 652, pp. 371–8. .

    Article  CAS  Google Scholar 

  31. J. Teeriniemi, P. Taskinen, and K. Laasonen: Intermetallics., 2015, vol. 57, pp. 41–50. .

    Article  CAS  Google Scholar 

  32. A.R. Natarajan, E.L.S. Solomon, B. Puchala, and A. Van der Ven: Acta. Mater., 2016, vol. 108, pp. 367–79. .

    Article  CAS  Google Scholar 

  33. S. Liu, E. Martínez, and J. LLorca: Acta. Mater., 2020, vol. 195, pp. 317–26. .

    Article  CAS  Google Scholar 

  34. S. Liu, G. Esteban-Manzanares, and J. LLorca: Phys. Rev. Mater., 2020, vol. 4, p. 093609. .

    Article  CAS  Google Scholar 

  35. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller: J. Chem. Phys., 1953, vol. 21, pp. 1087–92. .

    Article  CAS  Google Scholar 

  36. A. Van der Ven and G. Ceder: Phys. Rev. B., 2005, vol. 71, p. 054102. .

    Google Scholar 

  37. M.H.F. Sluiter, D. de Fontaine, X. Guo, R. Podloucky, and A. Freeman: Phys. Rev. B., 1990, vol. 42, pp. 10460–76. .

    Article  CAS  Google Scholar 

  38. M.H.F. Sluiter, Y. Watanabe, and D. de Fontaine: Phys. Rev. B., 1996, vol. 53, pp. 6137–51. .

    Article  CAS  Google Scholar 

  39. S. Banerjee, A. Arya, and G.P. Das: Acta. Mater., 1997, vol. 45, pp. 601–9. .

    Article  CAS  Google Scholar 

  40. M. Asta: Acta. Mater., 1996, vol. 44, pp. 4131–6. .

    Article  CAS  Google Scholar 

  41. G.P. Das, A. Arya, and S. Banerjee: Intermetallics., 1996, vol. 4, pp. 625–34. .

    Article  CAS  Google Scholar 

  42. https://github.com/prisms-center/CASMcode.

  43. V. Vaithyanathan, C. Wolverton, and L. Chen: Phys. Rev. Lett., 2002, vol. 88, p. 125503. .

    Article  CAS  Google Scholar 

  44. H. Liu, B. Bellón, and J. LLorca: Acta. Mater., 2017, vol. 132, pp. 611–26. .

    Article  CAS  Google Scholar 

  45. Y. Ji, A. Issa, T. Heo, J. Saal, C. Wolverton, and L.-Q. Chen: Acta. Mater., 2014, vol. 76, pp. 259–71. .

    Article  CAS  Google Scholar 

  46. H. Liu, I. Papadimitriou, F. Lin, and J. LLorca: Acta. Mater., 2019, vol. 167, pp. 121–35. .

    Article  CAS  Google Scholar 

  47. P. Giannozzi: J. Phys. Condens. Mater., 2009, vol. 21, p. 395502. .

    Article  Google Scholar 

  48. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni: J. Phys. Condens. Matter., 2017, vol. 29, p. 465901.

  49. D. Vanderbilt: Phys. Rev. B., 1990, vol. 41, pp. 7892–5. .

    Article  CAS  Google Scholar 

  50. J.P. Perdew: Phys. Rev. Lett., 1996, vol. 77, p. 3865. .

    Article  CAS  Google Scholar 

  51. A. van de Walle: JOM., 2013, vol. 65, pp. 1523–32. .

    Article  CAS  Google Scholar 

  52. A. Van der Ven, J.C. Thomas, B. Puchala, and A.R. Natarajan: Ann. Rev. Mater. Res., 2018, vol. 48, pp. 27–55. .

    Article  CAS  Google Scholar 

  53. B. Puchala and A. Van der Ven: Phys. Rev. B., 2013, vol. 88, p. 094108. .

    Article  CAS  Google Scholar 

  54. A. van de Valle and M. Asta: Model. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 521–38. .

    Article  Google Scholar 

  55. B. Montanari and N.M. Harrison: Chem. Phys. Lett., 2002, vol. 364, pp. 528–34. .

    Article  CAS  Google Scholar 

  56. A. Togo and I. Tanaka: Scripta Mater., 2015, vol. 108, pp. 1–5. .

    Article  CAS  Google Scholar 

  57. A.R. Natarajan and A. Van der Ven: Phys. Rev. Lett., 2018, vol. 121, p. 255701. .

    Article  CAS  Google Scholar 

  58. S. Kiyokawa: Phys. Plasmas., 2018, vol. 25, p. 053703. .

    Article  CAS  Google Scholar 

  59. E.A. Starke Jr. and J.T. Staley: Prog. Aerosp. Sci., 1996, vol. 32, pp. 131–72. .

    Article  Google Scholar 

  60. K.S. Kumar, S.A. Brown, and J.R. Pickens: Acta. Mater., 1996, vol. 44, pp. 1899–915. .

    Article  CAS  Google Scholar 

  61. J.M. Silcock: J. Inst. Metals., 1959, vol. 88, pp. 357–64. .

    Google Scholar 

  62. https://materialsproject.org/materials/mp-16506/

  63. K. Puhakainen, M. Bostrom, T.L. Groy, and U. Haussermann: J. Solid. State. Chem., 2010, vol. 183, pp. 2528–33. .

    Article  CAS  Google Scholar 

  64. https://www.webelements.com/lithium/crystal_structure.html

  65. E.C. Bain: Trans. Amer. Inst. Min. Met. Eng., 1924, vol. 70, pp. 25–46. .

    Google Scholar 

  66. Y. Nakagami, H. Kimizuka, and S. Ogata: J. Jpn. Inst. Met. Mater., 2016, vol. 80, pp. 575–84. .

    Article  CAS  Google Scholar 

  67. J.F. Nie: Physical Metallurgy of Light Alloys, Physical Metallurgy. 5th ed. Elsevier, New York, 2014, pp. 2009–156.

    Google Scholar 

  68. D. Tourret, H. Liu, J. LLorca: Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges. Prog. Mater. Sci., in press.

Download references

Acknowledgments

This investigation was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Advanced Grant VIRMETAL, Grant Agreement No. 669141). SL acknowledges the support from the European Union's Horizon 2020 research and innovation programme through a Marie Sklodowska-Curie Individual Fellowship (Grant Agreement 893883). Computer resources and technical assistance provided by the Centro de Supercomputación y Visualización de Madrid (CeSViMa) and by the Spanish Supercomputing Network (Project FI-2020-2-0044, node Calendula) are gratefully acknowledged. Finally, use of the computational resources of the Center for Nanoscale Materials, an Office of Science user facility, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. LLorca.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 10 March 2021; accepted 28 July 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Esteban-Manzanares, G. & LLorca, J. First Principles Prediction of the Al-Li Phase Diagram. Metall Mater Trans A 52, 4675–4690 (2021). https://doi.org/10.1007/s11661-021-06419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06419-x

Navigation