Skip to main content
Log in

Solidification Pathways in Highly Undercooled Co79.3B20.7 Alloy

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Up to five solidification pathways were revealed in solidification of undercooled Co79.3B20.7 alloy. As the undercooling prior to nucleation increases, the primary phase changes from Co3B to Co2B to Co23B6 and then to α-Co/Co3B eutectic. In the case that Co23B6 forms as primary phase, the alloy may completely solidify into Co23B6 or the primary Co23B6 phase is subsequently remelted and resolidified into α-Co/Co2B eutectic. Based on nucleation theories the phase competition was interpreted.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Y. Wu, J. Chang, W. Wang, L. Hu, S. Yang, and B. Wei: Acta Mater., 2017, vol. 129, pp. 366–77. .

    Article  CAS  Google Scholar 

  2. P. Lü and H.P. Wang: Scripta Mater., 2017, vol. 137, pp. 31–5. .

    Article  Google Scholar 

  3. Y. Lu, X. Lin, G. Yang, J. Li, and Y. Zhou: J. Appl. Phys., 2008, vol. 104, p. 013535. .

    Article  Google Scholar 

  4. X.X. Wei, X. Lin, W. Xu, Q.S. Huang, M. Ferry, J.F. Li, and Y.H. Zhou: Acta Mater., 2015, vol. 95, pp. 44–56. .

    Article  CAS  Google Scholar 

  5. R. Zhao, Y. Wang, J. Gao, E.B. Baker, D.M. Matson, M. Kolbe, A.C.-P. Chuang, and Y. Ren: Acta Mater., 2020, vol. 197, pp. 198–211. .

    Article  CAS  Google Scholar 

  6. J.F. Li, W.Q. Jie, G.C. Yang, and Y.H. Zhou: Acta Mater., 2002, vol. 50, pp. 1797–807. .

    Article  CAS  Google Scholar 

  7. E.G. Castle, A.M. Mullis, and R.F. Cochrane: Acta Mater., 2014, vol. 77, pp. 76–84. .

    Article  CAS  Google Scholar 

  8. S. Jeon, M. Kolbe, V. Kaban, G. String, A. Cleaver, I. Kaban, O. Shuleshova, J. Gao, and D.M. Matson: Acta Mater., 2019, vol. 176, pp. 43–52. .

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Gao, M. Kolbe, A.C.-P. Chuang, Y. Ren, and D. Matson: Acta Mater., 2018, vol. 142, pp. 172–80. .

    Article  CAS  Google Scholar 

  10. D.M. Herlach: Mater. Sci. Eng. R Rep., 1994, vol. 12, pp. 177–272. .

    Article  Google Scholar 

  11. A. Mizuno, J. Tamura, S. Kohara, and M. Watanabe: Mater. Sci. Forum., 2012, vol. 706, pp. 1702–6. .

    Article  Google Scholar 

  12. D.G. Quirinale, G.E. Rustan, A. Kreyssig, and A.I. Goldman: Appl. Phys. Lett., 2015, vol. 106, p. 241906. .

    Article  Google Scholar 

  13. D. Zhang, J. Xu, and F. Liu: Metall. Mater. Trans. A., 2015, vol. 46, pp. 5232–9. .

    Article  CAS  Google Scholar 

  14. F. Liu, J. Xu, D. Zhang, and Z. Jian: Metall. Mater. Trans. A., 2014, vol. 45, pp. 4810–9. .

    Article  CAS  Google Scholar 

  15. J. Xu, F. Liu, and B. Dang: Metall. Mater. Trans. A., 2013, vol. 44, pp. 1401–8. .

    Article  CAS  Google Scholar 

  16. P. Ohodnicki Jr., N. Cates, D. Laughlin, M. McHenry, and M. Widom: Phys. Rev. B., 2008, vol. 78, p. 144. .

    Article  Google Scholar 

  17. X.X. Wei, W. Xu, J.L. Kang, M. Ferry, and J.F. Li: J. Mater. Sci. Technol., 2017, vol. 33, pp. 352–8. .

    Article  CAS  Google Scholar 

  18. X.X. Wei, W. Xu, J.L. Kang, M. Ferry, and J.F. Li: J. Mater. Sci., 2016, vol. 51, pp. 6436–43. .

    Article  CAS  Google Scholar 

  19. Y.X. He, J.S. Li, J. Wang, and E. Beaugnon: J. Cryst. Growth., 2018, vol. 499, pp. 98–105. .

    Article  CAS  Google Scholar 

  20. Y. Du, J.C. Schuster, Y.A. Chang, Z. Jin, and B. Huang: Z. Metallk., 2002, vol. 93, pp. 1157–63. .

    Article  CAS  Google Scholar 

  21. J. Schöbel and H. Stadelmaier: Z. Metallk., 1966, vol. 57, pp. 323–5. .

    Google Scholar 

  22. M. Li, S. Ozawa, and K. Kuribayashi: Philos. Mag. Lett., 2004, vol. 84, pp. 483–93. .

    Article  CAS  Google Scholar 

  23. J.W. Christian: The Theory of Transformations in Metals and Alloys. Pergamon Press, Oxford, First, 1975, p. 418.

    Google Scholar 

  24. D. Turnbull: J. Chem. Phys., 1952, vol. 20, pp. 411–24. .

    Article  CAS  Google Scholar 

  25. F. Spaepen: Acta Metall., 1975, vol. 23, pp. 729–43. .

    Article  CAS  Google Scholar 

  26. P. Liao and K. Spear: Bull. Alloy Phase Diagr., 1988, vol. 9, pp. 452–7. .

    Article  Google Scholar 

  27. E.B. Baker, S. Jeon, O. Shuleshova, I. Kaban, Y. Wang, J. Gao, M. Kolbe, M.P. San Soucie, and D.M. Matson: Scripta Mater., 2021, vol. 194, p. 113645. .

    Article  CAS  Google Scholar 

Download references

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51771116, 51620105012 and 51821001).

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 3, 2021; accepted July 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yang, L. & Li, J. Solidification Pathways in Highly Undercooled Co79.3B20.7 Alloy. Metall Mater Trans A 52, 4324–4330 (2021). https://doi.org/10.1007/s11661-021-06413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06413-3

Navigation