Skip to main content
Log in

Solubility Product and Equilibrium Equations of Nonstoichiometric Niobium Carbonitride in Steels: Thermodynamic Calculations

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermodynamic models were established based on our previous studies to describe the equilibrium between the nonstoichiometric compound Nb(C,N) and the Fe-base solid solution (austenite and ferrite). With the assumption of equilibrium between fcc Nb and the Fe-based solid solution, the solubility of fcc Nb in the Fe-based solid solution was developed. Thus, the solubility product and equilibrium equations of NbCxNy in the Fe-base solid solution were further deduced. Two other thermodynamic interaction parameters for NbCxNy were considered in this study. The deduced solubility product of NbCxNy was in accordance with previous studies. The calculation results on compound NbCxNy in this study were in good agreement with both the measured data from the references and the calculation results from ThermoCalc. The deduced solubility expressions of fcc Nb provided references for developing solubility products of nonstoichiometric fcc Nb compounds in Fe-based solid solutions. This study offers guidance on the equilibrium of nonstoichiometric compounds in solid solutions. The solubility product of NbCxNy is (the solubility products of NbC and NbN are referenced from our previous work)

$$\log {}_{ }^{{\alpha /{\upgamma }}} K_{{{\text{NbC}}_{ x} {\text{N}}_{y} }}^{ } \cong x\log {}_{ }^{{\alpha /{\upgamma }}} K_{{{\text{NbC}}}}^{ } + y\log {}_{ }^{{\alpha /{\upgamma }}} K_{{{\text{NbN}}}}^{ } + \left( {1 - x - y} \right)\log {}_{ }^{{\alpha /{\upgamma }}} K_{{{\text{Nb}}}}^{ } + xy\frac{98}{T} - x\left( {1 - x - y} \right)\frac{4439}{T} - y\left( {1 - x - y} \right)\frac{3413}{T} + x{\text{log}}x + y{\text{log}}y + \left( {1 - x - y} \right){\text{log}}\left( {1 - x - y} \right)$$
$$\begin{gathered} \log {}_{ }^{\alpha } K_{{{\text{Nb}}}}^{ } = 1.92 + \frac{1227}{T} + \left( {0.051 - \frac{46.8}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( {0.013 - \frac{6.0}{T}} \right)\left[ {\text{wt pct Ni}} \right] \hfill \\ \end{gathered}$$
$$\begin{gathered}\log {}_{ }^{\gamma } K_{{{\text{Nb}}}}^{ } = 1.65 + \frac{1365}{T} + \left( {0.008 - \frac{20.9}{T}} \right)\left[ {\text{wt pct Mn}} \right] + \left( {0.012 + \frac{23.3}{T}} \right)\left[ {\text{wt pct Ni}} \right] + \left( {0.003 - \frac{9.7}{T}} \right)\left[ {\text{wt pct Cr}} \right] - 0.004\left[ {\text{wt pct Mo}} \right] \hfill \\ \end{gathered}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Klinkenberg, K. Hulka, and W. Bleck: Steel Res. Int., 2004, vol. 75(11), pp. 744–52.

    Article  CAS  Google Scholar 

  2. L.M. Fu, H.R. Wang, W. Wang, and A.D. Shan: Mater. Sci. Technol., 2011, vol. 27(6), pp. 996–1001.

    Article  Google Scholar 

  3. X.W. Lei, S. Dong, J.H. Huang, J. Yan, S.H. Chen, and X.K. Zhao: Mater. Sci. Eng. A., 2018, vol. 718, pp. 437–48.

    Article  CAS  Google Scholar 

  4. A.J. Deardo: Int. Mater. Rev., 2003, vol. 48(6), pp. 371–402.

    Article  CAS  Google Scholar 

  5. R.C. Sharma, V.K. Lakshmanan, and J.S. Kirkaldy: Metall. Mater. Trans. A., 1984, vol. 15A, pp. 545–53.

    Article  CAS  Google Scholar 

  6. I.I. Gorbachev and V.V. Popov: Phys. Met. Metallogr., 2010, vol. 110, pp. 52–61.

    Article  Google Scholar 

  7. Y. Xu, Y. Yu, X. Liu, and G. Wang: J. Mater. Sci. Technol., 2006, vol. 22(2), pp. 149–52.

    Article  CAS  Google Scholar 

  8. A.V. Khvan and B. Hallstedt: Calphad., 2012, vol. 39, pp. 744–52.

    Google Scholar 

  9. P.R. Rios: Mater. Sci. Technol., 1988, vol. 4, pp. 324–7.

    Article  CAS  Google Scholar 

  10. K. Balasubramanian, A. Kroupa, and J.S. Kirkaldy: Metall. Trans. A., 1992, vol. 23A, pp. 729–44.

    Article  CAS  Google Scholar 

  11. W. Roberts and P. Grieveson: Scripta Metall., 1974, vol. 8(5), pp. 451–7.

    Article  Google Scholar 

  12. V.K. Lakshmanan and J.S. Kirkaldy: Metall. Trans. A., 1984, vol. 15A, pp. 541–4.

    Article  CAS  Google Scholar 

  13. T. Mori, M. Tokizane, K. Yamaguchi, E. Sunami, and Y. Nakazima: Tetsu-to-Hagané., 1968, vol. 54, pp. 763–76.

    Article  CAS  Google Scholar 

  14. G. Inden: Proc. Calphad V Project Meeting, Planck Institute for Metal Research, Dusseldorf, 1976, pp. 1–13.

  15. M. Hillert and M. Jarl: Calphad., 1978, vol. 2, pp. 227–38.

    Article  CAS  Google Scholar 

  16. X.W. Lei, D.Y. Li, X.H. Zhang, and T.X. Liang: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 2978–90.

    Article  Google Scholar 

  17. X.W. Lei, D.Y. Li, X.H. Zhang, and T.X. Liang: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 4445–61.

    Article  Google Scholar 

  18. X.W. Lei, R.B. Yang, J.J. Ding, X.H. Zhang, C.B. Lai, and T.X. Liang: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 2173–84.

    Article  Google Scholar 

  19. S. Zajac and B. Jansson: Metall. Mater. Trans. B., 1998, vol. 29B, pp. 163–76.

    Article  CAS  Google Scholar 

  20. K. Inoue, N. Ishikawa, I. Ohnuma, H. Ohtani, and K. Ishida: ISIJ Int., 2001, vol. 41(2), pp. 175–82.

    Article  CAS  Google Scholar 

  21. E. Courtois, T. Epicier, and C. Scott: Micron., 2006, vol. 37(5), pp. 492–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2020YFA0714400), the Science and Technology Project of Science and Technology Department of Jiangxi Province of China (Grant No. 20202BABL204008), and the Science and Technology Project of Ganzhou City and National Natural Science Foundation of China (Grant Nos. 51974139 and 51961014). This work was also supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology. The authors thank Professor Guo Cui-Ping, University of Science and Technology Beijing, for the help with the ThermoCalc calculation. The authors sincerely appreciate the comments and modifications from the reviewer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Bin Lai or Xiang Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 6, 2021; accepted July 8, 2021.

Appendix

Appendix

See Table AI

Table A1 Nomenclature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, XW., Yang, RB., Liu, JM. et al. Solubility Product and Equilibrium Equations of Nonstoichiometric Niobium Carbonitride in Steels: Thermodynamic Calculations. Metall Mater Trans A 52, 4402–4412 (2021). https://doi.org/10.1007/s11661-021-06393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06393-4

Navigation