Skip to main content

Advertisement

Log in

Surface Analysis and In Vitro Corrosion Properties in Artificial Saliva of Surface-Treated Ti6Al4V Alloy for Dental Applications

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti alloys are commonly used in dental applications. The surface properties of the implants influence in vitro corrosion, protein adhesion, and osseointegration. The objective of this work was to investigate the influence of surface modification: plasma treatment, sandblasting, and acid treatment on the surface roughness, wettability, surface energy, and electrochemical corrosion properties in artificial saliva of Ti6Al4V alloy for dental applications. Surface analysis was carried out using AFM, optical profilometry, XRD, SEM/EDX, and contact angle measurements. In vitro corrosion resistance analyses of surface-treated Ti6Al4V substrates were performed in artificial saliva (AS) with and without fluorides. The surface analysis results showed that sandblasting decreased the crystallite size of the alloy surface to 10.8 nm. The hydrophilicity was improved through plasma treatment and sandblasting, as evidenced by the decrease in the water contact angle to 15 and 35 deg, respectively. The surface energy, after plasma treatment and sandblasting, increased by 10 and 28 pct, respectively. The in vitro corrosion test results validated the effective role of different surface treatments on the corrosion resistance behavior of Ti6Al4V substrates in AS medium with and without fluorides. The results showed that the treated Ti6Al4V alloy had improved surface and biocorrosion properties, making it a potential candidate for dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hussein, M. A., N. K. Ankah, A. Madhan Kumar, M. A. Azeem, S. Saravanan, A. A. Sorour, and N. Al Aqeeli: Ceram. Int., 2020, vol. 46, pp. 18573-18583.

    Article  CAS  Google Scholar 

  2. [2] Hussein, M. A., C. Suryanarayana, and N. Al-Aqeeli: Mater. Des., 2015, vol. 87, pp. 693-700.

    Article  CAS  Google Scholar 

  3. Melo-Fonseca, F., M. Gasik, S. Madeira, F. S. Silva, and G. Miranda: Mater. Charact. 2021, vol. 177, pp. 111161.

    Article  CAS  Google Scholar 

  4. M.A. Hussein, A. Madhan Kumar, N. Ankah, and M. A. Azeem: Ceram. Int., 2021

  5. [5] Sirdeshmukh, Neelesh, and Ganesh Dongre: Materials Today: Proceedings, 2021, vol. 44, pp. 2348-2355

    CAS  Google Scholar 

  6. [6] Yan, Yingdi, Emil Chibowski, and Aleksandra Szcześ: Mater. Sci. Eng. C., 2017, vol. 70, pp. 207-215.

    Article  CAS  Google Scholar 

  7. [7] Noro, Akio, Morio Kaneko, Isao Murata, and Masao Yoshinari: J BIOMED MATER RES B, 2013, vol. 101, pp. 355-363.

    Article  CAS  Google Scholar 

  8. Jemat, A., M. J. Ghazali, M. Razali, and Y. Otsuka: Biomed. Res. Int. 2015, vol. 2015, pp. 1-11

    Article  CAS  Google Scholar 

  9. [9] Wang, Shubin, Dongle Wu, Huan She, Mingxu Wu, Da Shu, Anping Dong, Hongchang Lai, and Baode Sun: Mater. Sci. Eng. C, 2020, vol. 113, pp. 110959.

    Article  CAS  Google Scholar 

  10. [10] C. Nune, R.D.K. Misra, M.C. Somani, L.P. Karjalainen: J.Biomed. Mater. Res. A,2014, vol. 102, pp. 1663–1676

    Article  CAS  Google Scholar 

  11. A. MadhanKumar, M. A. Hussein, A.Y. Adesina, S. Ramakrishna, and N. Al-Aqeeli: RSC advances, 2018, vol. 8, pp. 19181-19195.

    Article  CAS  Google Scholar 

  12. [12] Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S., Wang, J.Y., Fluke, C.J., Crawford, R.J. and Ivanova, E.P.: Biomaterials, 2010, vol. 31, pp. 3674–3683

    Article  CAS  Google Scholar 

  13. [13] R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka,L. Dluhos, D. Hrusak, J. Sochova: Adv. Eng. Mater.,2008, vol. 10, pp. 15–17

    Article  CAS  Google Scholar 

  14. Hussein, M.A., B. Yilbas, A. MadhanKumar, R. Drew, and N. Al-Aqeeli: J. Mater. Eng. Perform., 2018, vol. 9, pp. 4655-4664.

    Article  CAS  Google Scholar 

  15. Shivakoti, I., G. Kibria, S. Das, A. Sharma, B.B. Pradhan, and S. Chatterjee: Mater. Manuf. Process. 2021, vol. 36, pp. 858-867.

    Article  CAS  Google Scholar 

  16. Arregui, M., F. Latour, F.J. Gil, R.A. Pérez, L. Giner-Tarrida, and L.M. Delgado: Coatings, 2021, vol. 11, pp. 98.

    Article  CAS  Google Scholar 

  17. Kassab, E.J., C.D. Dosreisbarros, P.G. Silva, L. F. Silva, and J. A. P. Gomes: J. Mater. Eng. Perform. 2021, vol. 30, pp. 994–1000

    Article  CAS  Google Scholar 

  18. E. Arslan, Y. Totik, E. Demirci, A. Alsaran: J. Mater. Eng. Perform. 2010, vol. 19, pp. 428–433.

    Article  CAS  Google Scholar 

  19. [19] Vitelaru, C., N. Ghiban, A. C. Parau, M. Balaceanu, F. Miculescu, and A. Vladescu: MATERIALWISS WERKST, 2014, vol. 45, pp. 91-98.

    Article  CAS  Google Scholar 

  20. [20] Fojt, Jaroslav, Vojtěch Hybášek, Zdeněk Kačenka, and Eva Průchová: Metals, 2020, vol. 10, pp. 1547.

    Article  CAS  Google Scholar 

  21. [21] Wang, Guisen, Yi Wan, Teng Wang, and Zhanqiang Liu: Procedia Manufacturing, 2017, vol. 10, pp. 363-370.

    Article  CAS  Google Scholar 

  22. SenturkParreidt, T., M. Schmid, and C. Hauser: Foods, 2017, vol. 6, pp. 31

    Article  CAS  Google Scholar 

  23. Zhong, Z., S. Yin, C. Liu, Y. Zhong, W. Zhang, D. Shi, and C. Wang: Appl. Surf. Sci., 2003, vol. 207, pp. 183-189.

    Article  CAS  Google Scholar 

  24. [24] R. V. Bathomarco, G. Solorzano, C. N. Elias and R. Prioli: Appl. Surf. Sci., 2004, vol. 233, pp. 29–34.

    Article  CAS  Google Scholar 

  25. C.N. Elias, Y. Oshida, J.H.C. Lima, C.A. Muller: J. Mech. Behav. Biomed. Mater. 2008, vol. 1, pp. 234–242

    Article  Google Scholar 

  26. [26] Mohamed A. Hussein, Madhan Kumar, Robin Drew and Nasser Al-Aqeeli: Materials, 2018, vol. 11, pp. 1-15

    Article  CAS  Google Scholar 

  27. MadhanKumar, A., M.A. Hussein, A.Y. Adesina and N. Al-Aqeeli: Coatings 2019, vol. 9, pp. 344

    Article  CAS  Google Scholar 

  28. A. MadhanKumar, P. Sudhagar, S Ramakrishna, YS Kang, H Kim, ZM Gasem, N. Rajendran: Appl. Surf. Sci., 2014, vol. 307, pp. 52–61

    Article  CAS  Google Scholar 

  29. [29] Yong-yuan Guo, Meng-qi Cheng, De-sheng Chen, Xiao-bing Xue, Xian-long Zhang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 175–180

    Article  Google Scholar 

  30. [30] A.K. Shukla, R. Balasubramaniam: Corros. Sci. 2006, vol. 48, pp. 1696–1720

    Article  CAS  Google Scholar 

  31. [31] Asadullah, Syed, Shiqi Mei, Deqiang Wang, Yuan Yao, Yongkang Pan, Dongliang Wang, Han Guo, and Jie Wei: Mater. Des., 2020, vol. 190, pp. 108510.

    Article  CAS  Google Scholar 

  32. Rupp, F., L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Hüttig: Dental Materials, 2018, vol. 34, pp. 40-57.

    Article  CAS  Google Scholar 

  33. Günay-Bulutsuz, A., Ö. Berrak, H. AygülYeprem, E. D. Arisan, and M. E. Yurci: Mater. Sci. Eng. C, 2018, vol. 91, pp. 382-388.

    Article  CAS  Google Scholar 

  34. [34] Agno A, Bello DD.: J Mater Sci Mater Med, 2004, vol. 15, pp. 935–949.

    Article  Google Scholar 

  35. Lüthen, F., R. Lange, P. Becker, J. Rychly, U. Beck, and J.G. BarbaraNebe: Biomaterials, 2005, vol. 26, pp. 2423-2440.

    Article  CAS  Google Scholar 

  36. [36] S. Ponader, E. Vairaktaris, P. Heinl, C. V. Wilmowsky, A. Rottmair, et al: J Biomed Mater Res A., 2008, vol. 84, pp. 1111-1119.

    Article  CAS  Google Scholar 

  37. [37] Deligianni, D. D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., & Missirlis, Y. F.: Biomaterials, 2001, vol. 22, pp. 1241-1251.

    Article  CAS  Google Scholar 

  38. [38] Geng, Yaoyi, Éanna McCarthy, Dermot Brabazon, and Noel Harrison: Surf. Coat. Technol., 2020., vol. 398, pp. 126085.

    Article  CAS  Google Scholar 

  39. [39] C. Eriksson, J. Lausmaa, H. Nygren: Biomaterials 2001, vol. 22, pp. 1987–1996.

    Article  CAS  Google Scholar 

  40. [40] J.Y. Martin, Z. Schwartz, T.W. Hummert, D.M. Schraub, J. Simpson, J. Lankford, D.D.Dean, D.L. Cochran, B.D. Boyan: J. Biomed. Mater. Res. 1995, vol. 29, pp. 389–401

    Article  CAS  Google Scholar 

  41. [41] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer: Biomaterials, 2004, vol. 25, pp. 4087–4103.

    Article  CAS  Google Scholar 

  42. [42] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq: Dent. Mater. 2007, vol. 23, pp. 844–854

    Article  CAS  Google Scholar 

  43. [43] Zhao, M. H., Chen, X. P., & Wang, Q. :Scientific reports, 2014, vol.4, pp. 1-5.

    CAS  Google Scholar 

  44. [44] Xiaojing He, Guannan Zhang, Xin Wang, Ruiqiang Hang, Xiaobo Huang, Lin Qin, Bin Tang, Xiangyu Zhang: Ceram. Int., 2017, vol. 43, pp. 16185–16195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge King Fahd University of Petroleum and Minerals for providing support.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hussein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2021; accepted July 4, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, M.A., Madhan Kumar, A., Abdelaal, A.F. et al. Surface Analysis and In Vitro Corrosion Properties in Artificial Saliva of Surface-Treated Ti6Al4V Alloy for Dental Applications. Metall Mater Trans A 52, 4299–4309 (2021). https://doi.org/10.1007/s11661-021-06387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06387-2

Navigation