Skip to main content
Log in

Size Effects on the Mechanical Responses and Deformation Mechanisms of AZ31 Mg Foils

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An integrated experimental and microstructure-based simulation research was carried out to study the effect of thickness and grain size on the mechanical response and deformation mechanism of AZ31 Mg foils. Equal channel angle pressing (ECAP) and subsequent annealing were applied to fabricate the billets with tailored microstructures. Ex situ micro-tensile tests of the foils were conducted to explore the meso-scale size effect. The experimental results show that the flow stress, ductility, and microstructure evolution of the foils are significantly affected by both grain size and thickness. With the increase of grain number (λ) in thickness, the flow stress curve changes from convex-up to a typical sigmoidal shape, and the extension twinning is remarkably suppressed. Full-field crystal plasticity simulations successfully captured the micromechanical interaction between dislocation slip and twinning. Specifically, the decrease of λ enhances the dominance of extension twinning on the mechanical response and ductility of the foils and further intensifies the interaction of deformation twinning on slip resistance. As a measurement for describing the combined effect of grain size and geometrical size, λ is a critical factor affecting the interaction and competition between dislocation slip and deformation twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Arentoft, S. Bruschi, A. Ghiotti, N.A. Paldan, and J.V. Holstein: Int. J. Mater. Form., 2008, vol. 1, pp. 435–38.

  2. X.W. Wang, J. Xu, D.B. Shan, B. Guo, and J. Cao: Mater Des., 2017, vol. 127, pp. 134–43.

    Article  CAS  Google Scholar 

  3. X.P. Zhang, S.F. Feng, X.T. Hong, and J.Q. Liu: Mater Des., 2013, vol. 46, pp. 256–63.

    Article  CAS  Google Scholar 

  4. H.J. Choi, Y. Kim, J.H. Shin, and D.H. Bae: Mater. Sci. Eng. A., 2010, vol. 527, pp. 1565–70.

    Article  Google Scholar 

  5. J.C. Baird, B. Li, S.Y. Parast, S.J. Horstemeyer, L.G. Hector, P.T. Wang, and M.F. Horstemeyer: Scr. Mater., 2012, vol. 67, pp. 471–4.

    Article  CAS  Google Scholar 

  6. A. Pandey, F. Kabirian, J.H. Hwang, S.H. Choi, and A.S. Khan: Int. J. Plast., 2015, vol. 68, pp. 111–31.

    Article  CAS  Google Scholar 

  7. H.M. Wang, P.D Wu, and J. Wang, Metall. Mater Trans. A, 2015, vol. 46A, pp. 3079–90.

  8. J.F. Nie, K.S. Shin, and Z.R. Zeng: Metall. Mater Trans. A., 2020, vol. 51, pp. 6045–109.

    Article  Google Scholar 

  9. B.C. Suh, M.S. Shim, D.W. Kim, and N.J. Kim: Scr. Mater., 2013, vol. 69, pp. 465–8.

    Article  CAS  Google Scholar 

  10. Y.B. Chun and C.H.J. Davies: Metall. Mater. Trans. A., 2011, vol. 42, pp. 4113–25.

    Article  Google Scholar 

  11. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado: Acta Mater., 2015, vol. 84, pp. 443–56.

    Article  Google Scholar 

  12. B.Q. Shi, Y.Q. Cheng, X.L. Shang, H. Yan, R.S. Chen, and W. Ke: Mater. Sci. Eng. A., 2019, vol. 743, pp. 558–66.

    Article  CAS  Google Scholar 

  13. J.A. del Valle, F. Carreño, and O.A. Ruano: Acta Mater., 2006, vol. 54, pp. 4247–59.

    Article  Google Scholar 

  14. L.F. Wang, E. Mostaed, X.Q. Cao, G.S. Huang, A. Fabrizi, F. Bonollo, C.Z. Chi, and M. Vedani: Mater. Des., 2016, vol. 89, pp. 1–8.

    Article  Google Scholar 

  15. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–103.

    Article  CAS  Google Scholar 

  16. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew: Mater. Sci. Eng. A., 2008, vol. 486, pp. 545–55.

    Article  Google Scholar 

  17. B. Li, S.P. Joshi, O. Almagri, Q. Ma, K.T. Ramesh, and T. Mukai: Acta Mater., 2012, vol. 60, pp. 1818–26.

    Article  CAS  Google Scholar 

  18. Y. Wang and H. Choo: Acta Mater., 2014, vol. 81, pp. 83–97.

    Article  CAS  Google Scholar 

  19. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani: Mater. Charact., 2015, vol. 107, pp. 70–8.

    Article  CAS  Google Scholar 

  20. W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra: Scr. Mater., 2011, vol. 65, pp. 994–7.

    Article  CAS  Google Scholar 

  21. F.S. Pan, B. Zeng, B. Jiang, A. Atrens, and H.W. Dong: Mater. Charact., 2017, vol. 124, pp. 266–75.

    Article  CAS  Google Scholar 

  22. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang: Scr. Mater., 2006, vol. 55, pp. 637–40.

    Article  CAS  Google Scholar 

  23. M. Tsang, A. Armutlulu, A.W. Martinez, S.A.B. Allen, and M.G. Allen: Microsyst. Nano., 2015, vol. 1, p. 15024.

    Article  CAS  Google Scholar 

  24. F. Liu, C. Chen, J. Niu, J. Pei, H. Zhang, H. Huang, and G. Yuan: Mater. Sci. Eng. C., 2015, vol. 48, pp. 400–7.

    Article  CAS  Google Scholar 

  25. M.W. Fu, J.L. Wang, and A.M. Korsunsky: Int. J. Mach. Tool. Manu., 2016, vol. 109, pp. 94–125.

    Article  Google Scholar 

  26. J.R. Greer and J.T.M. De Hosson: Prog. Mater. Sci., 2011, vol. 56, pp. 654–724.

    Article  CAS  Google Scholar 

  27. W.L. Chan, M.W. Fu, and J. Lu: Mater. Des., 2011, vol. 32, pp. 198–206.

    Article  CAS  Google Scholar 

  28. H.M. Zhang, J. Liu, D.S. Sui, Z.S. Cui, and M.W. Fu: Int. J. Plast., 2018, vol. 100, pp. 69–89.

    Article  Google Scholar 

  29. S. Mahabunphachai and M. Koç: Int. J. Mach. Tool. Manu., 2008, vol. 48, pp. 1014–29.

    Article  Google Scholar 

  30. H.M. Zhang and X.H. Dong: Mater. Sci. Eng. A., 2016, vol. 658, pp. 450–62.

    Article  CAS  Google Scholar 

  31. J. Xu, B. Guo, D.B. Shan, M.X. Li, and Z.L. Wang: Mater. Trans., 2013, vol. 54, pp. 984–9.

    Article  CAS  Google Scholar 

  32. K.E. Prasad, K. Rajesh, and U. Ramamurty: Acta Mater., 2014, vol. 65, pp. 316–25.

    Article  CAS  Google Scholar 

  33. R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, and J.M. Molina-Aldareguia: Acta Mater., 2015, vol. 93, pp. 114–28.

    Article  Google Scholar 

  34. G.D. Sim, G. Kim, S. Lavenstein, M.H. Hamza, H.D. Fan, and J.A. El-Awady: Acta Mater., 2018, vol. 144, pp. 11–20.

    Article  CAS  Google Scholar 

  35. S. Biswas, S.S. Dhinwal, and S. Suwas: Acta Mater., 2010, vol. 58, pp. 3247–61.

    Article  CAS  Google Scholar 

  36. R.B. Figueiredo and T.G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 4827–36.

    Article  CAS  Google Scholar 

  37. X.L. Nan, H.Y. Wang, L. Zhang, J.B. Li, and Q.C. Jiang: Scr. Mater., 2012, vol. 67, pp. 443–6.

    Article  CAS  Google Scholar 

  38. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55, pp. 3899–910.

    Article  CAS  Google Scholar 

  39. R.H.F. Bachmann and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–8.

    Article  CAS  Google Scholar 

  40. M.W. Vaughan, W. Nasim, E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, and I. Karaman: Acta Mater., 2019, vol. 168, pp. 448–72.

    Article  CAS  Google Scholar 

  41. A.A. Salem, S.R. Kalidindi, R.D. Doherty, and S.L. Semiatin: Metall. Mater. Trans. A., 2006, vol. 37, pp. 259–68.

    Article  CAS  Google Scholar 

  42. F.L. Wang and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 63–86.

    Article  CAS  Google Scholar 

  43. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–502.

    Article  CAS  Google Scholar 

  44. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe: Comp. Mater. Sci., 2019, vol. 158, pp. 420–78.

    Article  CAS  Google Scholar 

  45. M.H. Yoo: Metall. Trans. A., 1981, vol. 12, pp. 409–18.

    Article  Google Scholar 

  46. S.R. Agnew, D.W. Brown, and C.N. Tomé: Acta Mater., 2006, vol. 54, pp. 4841–52.

    Article  CAS  Google Scholar 

  47. L.V. Raulea, A.M. Goijaerts, L.E. Govaert, and F.P.T. Baaijens: J. Mater. Process. Tech., 2001, vol. 115, pp. 44–8.

    Article  CAS  Google Scholar 

  48. P.J.M. Janssen, T.H. Keijser, and M.G.D. Geers: Mater. Sci. Eng. A., 2006, vol. 419, pp. 238–48.

    Article  Google Scholar 

  49. M. Gzyl, R. Pesci, A. Rosochowski, S. Boczkal, and L. Olejnik: J. Mater. Sci., 2015, vol. 50, pp. 2532–43.

    Article  CAS  Google Scholar 

  50. Y.R. Zhao, L.L. Chang, J. Guo, and Y.P. Jin: J. Magnesium. Alloy., 2019, vol. 7, pp. 90–7.

    Article  CAS  Google Scholar 

  51. P.D. Wu, X.Q. Guo, H. Qiao, S.R. Agnew, D.J. Lloyd, and J.D. Embury: Acta Mater., 2017, vol. 122, pp. 369–77.

    Article  CAS  Google Scholar 

  52. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Philos. Mag. A., 1999, vol. 79, pp. 1671–95.

    Article  CAS  Google Scholar 

  53. J. Dong, W.C. Liu, X. Song, P. Zhang, W.J. Ding, and A.M. Korsunsky: Mater. Sci. Eng. A., 2010, vol. 527, pp. 6053–63.

    Article  Google Scholar 

  54. D. Tromans: Int. J. Recent. Res. Appl. Stud., 2011, vol. 6, pp. 462–83.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding support from the National Natural Science Foundation of China with the project Nos. 51635005 and 52075329, as well as from Shanghai Rising-Star Program (20QA1405300). This work is also carried out with the support from the Program of Shanghai Academic Research Leader (Grant No.19XD1401900). The authors also acknowledge the Instrumental Analysis Center of Shanghai Jiao Tong University for the support on ex situ EBSD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 18, 2020; accepted May 11, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 562 kb)

Appendix: Finite Strain Crystal Plasticity Theory

Appendix: Finite Strain Crystal Plasticity Theory

This work adopts a finite strain rate-dependent plasticity flow law conjugated with a modified twinning model from Salem et al.[43] to describe the plasticity response of HCP crystals. The plastic velocity gradient containing the contribution of both slip and twinning is expressed as:

$$ {\mathbf{L}}^{{\text{p}}} = \left( {1.0 - f_{{{\text{tw}}}} } \right)\sum \dot{\gamma }_{{{\text{sp}}}}^{\alpha } {\mathbf{S}}_{{{\text{sp}}}}^{\alpha } + f_{{{\text{tw}}}} \sum \dot{\gamma }_{{{\text{tw}}}}^{\beta } {\mathbf{S}}_{{{\text{tw}}}}^{\beta } + f_{{{\text{tw}}}} \sum \dot{\gamma }_{{{\text{sp}}}}^{\alpha } {\hat{\mathbf{S}}}_{{{\text{sp}}}}^{\alpha }, $$
(A1)

where \({\mathbf{S}}_{{{\text{sp}}}}^{\alpha },\;{\hat{\mathbf{S}}}_{{{\text{sp}}}}^{\alpha }\) and \({\mathbf{S}}_{{{\text{tw}}}}^{\beta }\) are the Schmid tensors of the potential slip (the untwined matrix and the twined region) and twinning systems, \(\dot{\gamma }_{{{\text{sp}}}}^{\alpha }\) and \(\dot{\gamma }_{{{\text{tw}}}}^{\beta }\) denote the plastic shearing rates associated with slip and twinning on the αth slip system and the βth twinning system, and \(f_{{{\text{tw}}}}\) is the accumulated volume fraction of the twinned areas.

The plastic shearing rates of both slip and twinning are describe by a power-law constitutive relation. They are written as:

$$ \dot{\gamma }_{{{\text{sp}}}}^{\alpha } = \dot{\gamma }_{{{\text{sp}}}}^{0} \left| {\frac{{\tau_{{{\text{sp}}}}^{\alpha } }}{{g_{{{\text{sp}}}}^{\alpha } }}} \right|^{{1/m_{{{\text{sp}}}} }} {\text{sign}}\left( {\tau_{{{\text{sp}}}}^{\alpha } } \right),{\text{ and }}\dot{\gamma }_{{{\text{tw}}}}^{\beta } = \left\langle \dot{\gamma }_{{{\text{tw}}}}^{0} \frac{{\tau_{{{\text{tw}}}}^{\beta } }}{{g_{{{\text{tw}}}}^{\beta } }}\right\rangle^{{1/m_{{{\text{tw}}}} }} $$
(A2)

where \(\dot{\gamma }_{{{\text{sp}}}}^{0} \) and \(\dot{\gamma }_{{{\text{tw}}}}^{0}\) are the reference shearing rates, \(m_{{{\text{sp}}}}\) and \(m_{{{\text{tw}}}}\) the rate sensitivity parameters, \(g_{{{\text{sp}}}}^{\alpha }\) and \(g_{{{\text{tw}}}}^{\beta }\) the slip and twinning resistances, respectively. The evolutions of \(g_{{{\text{sp}}}}^{\alpha }\) and \(g_{{{\text{tw}}}}^{\beta }\) are described as follows[43]:

$$ \left\{ {\begin{array}{*{20}c} {\dot{g}_{{{\text{sp}}}}^{\alpha } = h_{{{\text{sp}}}}^{0} \left( {1 + c_{1} f_{{{\text{tw}}}} } \right)\mathop \sum \limits_{\xi } \left( {1 - \frac{{g_{{{\text{sp}}}}^{\xi } }}{{g_{{{\text{sp}}}}^{\infty } }}} \right)^{n} \dot{\gamma }_{{{\text{sp}}}}^{\xi } } \\ {\dot{g}_{{{\text{tw}}}}^{\beta } = h_{{{\text{tw}}}}^{0} \left( {f_{{{\text{tw}}}} } \right)^{{c_{2} }} \mathop \sum \limits_{\zeta } \dot{\gamma }_{{{\text{tw}}}}^{\zeta } + h_{{{\text{tw}} - {\text{sp}}}}^{0} \left( {\mathop \sum \limits_{\alpha } \gamma_{{{\text{sp}}}}^{\alpha } } \right)^{{c_{3} }} \mathop \sum \limits_{\xi } \dot{\gamma }_{{{\text{sp}}}}^{\xi } } \\ \end{array} } \right.{ ,} $$
(A3)

where \(h_{{{\text{sp}}}}^{0}\) represents the initial hardening modulus of slip systems, and \(g_{{{\text{sp}}}}^{\infty }\) denotes the saturated slip resistance in the absence of twinning. \(h_{{{\text{tw}}}}^{0}\) and \(h_{{{\text{tw}} - {\text{sp}}}}^{0}\) denote the initial twin hardening moduli due to twin-twin interaction and slip-twin interaction, respectively. The parameters \(n\), \(c_{1}\), \(c_{2}\), \(c_{3}\), and \(s_{{{\text{pr}}}}\) are estimated constants. In particular, \(c_{1}\) describes the effect of the Basinski-type transmutation of slip resistance. More details on the physical basis of these parameters can be found in the work of Salem et al.[43] It is supposed that there is a linear relationship between the twining shear rate and the rate of twin volume fraction, i.e., \(\dot{\gamma }_{{{\text{tw}}}}^{\beta } = \dot{f}_{{{\text{tw}}}}^{\beta } \gamma_{{{\text{tw}}}}\), where \(\gamma_{{{\text{tw}}}}\) is the twinning shear which can be expressed in terms of the axial ratio c/a. For Mg crystals, c/a = 1.624, and \(\gamma_{{{\text{tw}}}} = 0.13\) for the \(\left\{ {10\overline{1}2} \right\}\langle 10\overline{11} \rangle\) extension twinning.[45] In the end, the total volume fraction of twins \(f_{{{\text{tw}}}} = \mathop \sum_{\beta } f_{{{\text{tw}}}}^{\beta }\) with \(f_{{{\text{tw}}}}^{\beta } \ge 0\) and \(f_{{{\text{tw}}}} \le 1\).

Mg alloys have multiple families of potential slip systems and twinning systems to accommodate deformation. In this work, we consider three \(\left\{ {0001} \right\}\langle 11\overline{2}0 \rangle\) basal \(a\) slip systems, three \(\left\{ {10\overline{1}0} \right\}\langle 11\overline{2}0 \rangle\) prismatic \(a\) slip systems, and six \(\left\{ {11\overline{2}3} \right\}\langle \overline{1}011 \rangle\) pyramidal \(c + a\) slip systems, as well as six \(\left\{ {10\overline{1}2} \right\}\langle 10\overline{11} \rangle\) extension twinning systems. At room temperature, the basal slip systems are most easily activated comparing with other non-basal slip systems because their initial critical resolved shear stress (CRSS) are much smaller than that of non-basal slip systems.[52,53] As the flow stress curves of the foils exhibits a complex dependence of grain size and thickness, developing a non-local CP model[30] currently is not the aim of this work. The CRSSs and hardening parameters of these deformation modes for the material are referenced to the well-calibrated parameters of Agnew et al.,[46] in which the studied material is also the extruded AZ31 alloy. The specific material parameters are listed in Table A1.

Table A1 Material Parameters of the CP Model for the AZ31 Alloy

In Table A1, the rate sensitivity coefficient \(m\) was routinely chosen to be a small value for all the deformation modes in view of the studied room temperature deformation; all parameters of slip systems were fitted by correlating the evolution law of \(\dot{g}_{{{\text{sp}}}}^{\alpha }\) (Eq. A3 with \(c_{1} = 0\)) to the Voce-type hardening law with calibrated material parameters from the literature[46]; the initial resistance (\(g^{0} = 30{\text{MPa}}\)) of extension twinning was also obtained from Reference 46; \(h_{{{\text{tw}}}}^{0}\) and \(h_{{{\text{tw}} - {\text{sp}}}}^{0}\) are the estimated coefficients that describe the slightly hardening of twinning resistance. Other parameters related to the twinning process and the ratio of \(h_{{{\text{tw}}}}^{0}\) to \(h_{{{\text{tw}} - {\text{sp}}}}^{0}\) were referenced to the suggestion of Salem et al.,[43] and they are \(c_{1} = 0.1\), \(c_{2} = c_{3} = 10\), and \(s_{{{\text{pr}}}} = 10\). In the end, the elastic properties of the Mg single crystal were referred to Reference 54, i.e., \(C_{11} = 59.3{\text{GPa}}\), \(C_{33} = 61.5{\text{GPa}}\), \(C_{44} = 16.4{\text{GPa}}\), \(C_{12} = 25.7{\text{GPa}}\), and \(C_{13} = 21.4{\text{GPa}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Shang, X., Zhang, H. et al. Size Effects on the Mechanical Responses and Deformation Mechanisms of AZ31 Mg Foils. Metall Mater Trans A 52, 3585–3599 (2021). https://doi.org/10.1007/s11661-021-06331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06331-4

Navigation