Skip to main content
Log in

Analysis of Concentration Dependent Interdiffusion Coefficient Under the Condition of Pre-Existing Non-uniform Solute Distribution

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A numerical inverse method is used to calculate concentration dependency of interdiffusion coefficient under a condition of pre-existing non-uniform solute distribution, which is impossible to do by standard techniques including the Boltzmann–Matano, Sauer–Freise, Hall, and Wagner methods. The results show that in contrast to what has been implicitly assumed in the literature, “calculation-error-free” concentration-dependent interdiffusion coefficient can be significantly influenced by non-uniform solute distribution that pre-exists in a material prior to a diffusion process. In such cases, the use of concentration-dependent interdiffusion coefficient obtained by the standard techniques, such as, the Boltzmann–Matano, Sauer–Freise, Hall, and Wagner methods, to model, predict or analyze diffusion effects during multi-stage materials processing, such as, sintering, brazing, coating and heat treatments, can be considerably unreliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.L. Bryan, P. Alieninov, I.S. Berglund, M.V. Manuel, Calphad Comput. Coupling Phase Diag. Thermochem. 48, 123–130 (2015)

    Article  CAS  Google Scholar 

  2. J. Allison, D. Backman, L. Christodoulou, JOM 58, 25–27 (2006)

    Article  Google Scholar 

  3. H. Mehrer: in Diffusion in Solids, Springer, Berlin, 2007, p. 165.

  4. T. Ahmed, I.V. Belova, G.E. Murch, Procedia Eng. 105, 570–575 (2015)

    Article  CAS  Google Scholar 

  5. S. Santra, A. Paul, Metall. Mater. Trans. A 46A, 3887–3899 (2015)

    Article  Google Scholar 

  6. L.D. Hall, J. Chem. Phys. 87, 87–89 (1953)

    Article  Google Scholar 

  7. M. Reisner, M. Oberkofler, S. Elgeti, M. Balden, T. Höschen, M. Mayer, T.F. Silva, Nucl. Mater. Energy 19, 189–194 (2019)

    Article  Google Scholar 

  8. M. Okugawa, H. Numakura, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 3813–3814 (2015)

    Article  CAS  Google Scholar 

  9. T. Ahmed, I.V. Belova, A.V. Evteev, E.V. Levchenko, G.E. Murch, J. Phase Equilib. Diffus. 36, 366–374 (2015)

    Article  CAS  Google Scholar 

  10. M. Liu, H. Fu, C. Xu, W. Xiao, Q. Peng, H. Yamagata, C. Ma, Mater. Sci. Eng. A 712, 757–764 (2018)

    Article  CAS  Google Scholar 

  11. A.V. Galakhov, Refract. Ind. Ceram. 50, 191–197 (2009)

    Article  CAS  Google Scholar 

  12. Y. Zhou, W.F. Gale, T.H. North, Int. Mater. Rev. 40, 181–196 (1995)

    Article  CAS  Google Scholar 

  13. C. Zhong, F. Liu, Y. Wu, J. Le, L. Liu, M. He, J. Zhu, W. Hu, J. Alloys Compd. 520, 11–21 (2012)

    Article  CAS  Google Scholar 

  14. Y.I. Komizo, K. Ogawa, Yosetsu Gakkai Ronbunshu (Q. J. Jpn. Weld. Soc.) 15, 425–431 (1997)

    CAS  Google Scholar 

  15. E.M. Dietze, P.N. Plessow, J. Phys. Chem. C 122, 11524–11531 (2018)

    Article  CAS  Google Scholar 

  16. L. Zhu, Q. Zhang, Z. Chen, C. Wei, G. Cai, J. Mater. Sci. 52, 3255–3268 (2017)

    Article  CAS  Google Scholar 

  17. W. Chen, Q. Li, L. Zhang, Materials (Basel) 10, 1–11 (2017)

    Google Scholar 

  18. Q. Zhang, J. Zhao, Intermetallics 34, 132–141 (2013)

    Article  Google Scholar 

  19. O. Olaye, O.A. Ojo, Metall. Mater. Trans. A 51A, 6482–6497 (2020)

    Article  Google Scholar 

  20. I. Gregor, D. Patra, J. Fluorescence 15, 415–422 (2005)

    Article  Google Scholar 

  21. C.D. Le: McMaster University, Canada (Thesis), 1968.

  22. S.T. Oyama: in Inorganic Polymeric and Composite Membranes, eds. S.T. Oyama and S.M. Stagg-Williams, vol. 14, Elsevier, Blacksburg, 2011, p. 158.

  23. G.L.E. Gall, J. Debuigne, Acta Mater. 35, 2297–2305 (2000)

    Article  Google Scholar 

  24. D. Ansel, I. Thibon, M. Boliveau, J. Debuigne, Acta Mater. 46, 423–430 (1998)

    Article  CAS  Google Scholar 

  25. B. Chao, S. Chae, X. Zhang, K. Lu, M. Ding, J. Im, P.S. Ho, B. Chao, S. Chae, X. Zhang, K. Lu, M. Ding, J. Im, J. Appl. Phys. 100, 1–10 (2006)

    Article  Google Scholar 

  26. C.M. Chen, S.W. Chen, J. Mater. Res. 18, 1293–1296 (2003)

    Article  CAS  Google Scholar 

  27. J. Lienig and M. Thiele: in Fundamentals of Electromigration- Aware Integrated Circuit Design, Springer, Cham, 2018, pp. 13–26.

  28. B. Chao, S.H. Chae, X. Zhang, K.H. Lu, J. Im, P.S. Ho, Acta Mater. 55, 2805–2814 (2007)

    Article  CAS  Google Scholar 

  29. W.M. Tang, A.Q. He, Q. Liu, D.G. Ivey, Int. J. Miner. Metall. Mater. 17, 459–463 (2010)

    Article  CAS  Google Scholar 

  30. I. Daruka, I.A. Szabó, D.L. Beke, C. Cserháti, A. Kodentsov, F.J.J. Van Loo, Acta Mater. 44, 4981–4993 (1996)

    Article  CAS  Google Scholar 

  31. G.B. Stephenson, Acta Mater. 36, 2663–2683 (1988)

    Article  CAS  Google Scholar 

  32. F.C. Larche, Acta Mater. 30, 1835–1845 (1982)

    Article  Google Scholar 

  33. R.K. Jain, R.J. van Overstraeten, Phys. Status Solidi 25, 125–130 (1974)

    Article  CAS  Google Scholar 

  34. D.L. Beke, I.A. Szabó, Z. Erdélyi, G. Opposits, Mater. Sci. Eng. A 387–389, 4–10 (2004)

    Article  Google Scholar 

  35. D.L. Beke, Z. Erdélyi, B. Parditka, Defect. Diffus. Forum 309–310, 113–120 (2011)

    Article  Google Scholar 

  36. S.W. Donald, P.W. Gordon, Metall. Trans. A 8A, 1977–1531 (1977)

    Google Scholar 

  37. G. Opposits, S. Szabó, D.L. Beke, Z. Guba, I.A. Szabó, Scr. Mater. 39, 977–983 (1998)

    Article  CAS  Google Scholar 

  38. J. Chen-Min Li, Metall. Trans. A 9A, 1353–80 (1978)

    Article  Google Scholar 

  39. S. Prussin, J. Appl. Phys. 32, 1876–1881 (1961)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors also thank the NSERC of Canada for providing the financial support for the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Olaye or O. A. Ojo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 6, 2021; accepted March 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olaye, O., Ojo, O.A. Analysis of Concentration Dependent Interdiffusion Coefficient Under the Condition of Pre-Existing Non-uniform Solute Distribution. Metall Mater Trans A 52, 2787–2794 (2021). https://doi.org/10.1007/s11661-021-06268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06268-8

Navigation