Skip to main content
Log in

Load Partitioning Between Mg17Al12 Precipitates and Mg Phase in the AZ91 Alloy Using In-Situ Synchrotron Radiation Diffraction Experiments

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Load partitioning between Mg17Al12 precipitates and the magnesium matrix was examined from room temperature to 200 °C using in-situ synchrotron radiation diffraction during uniaxial compressive tests of AZ91 alloy. Precipitation of the Mg17Al12 phase during aging increases the yield stress of the alloy compared to the solutionized state. In addition to the increase in critical resolved shear stress for the activation of the deformation system, the magnesium matrix transfers some of its internal load to the harder Mg17Al12 intermetallic phase. Load transfer is carried out by the accumulation of dislocations at the Mg-Mg17Al12 interface. The increase in the local stress induces a widening of diffraction peaks of the Mg17Al12 phase. At 200 °C, dislocations can easily shear through or climb around Mg17Al12 precipitates reducing dramatically their reinforcing capacity and, therefore, the magnesium matrix must bear a higher fraction of the applied load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.F. Crawley and K.S. Milliken: Acta Metall., 1974, Vol. 22, pp. 557-62.

    Article  CAS  Google Scholar 

  2. D. Duly, J.P. Simon and Y. Brechet: Acta Metall. Mater., 1995, Vol 43, pp. 101-06.

    CAS  Google Scholar 

  3. M.X. Zhang and P.M. Kelly: Scr. Mater., 2003, Vol. 48, pp. 647-652.

    Article  CAS  Google Scholar 

  4. D. Bradai, P. Zieba, E. Bischoff and W. Gust: Mater. Chem. Phys., 2003, Vol 78, pp. 222-226.

    Article  Google Scholar 

  5. S. Celotto: Acta Mater., 2000, Vol. 48, pp. 1775-87.

    Article  CAS  Google Scholar 

  6. S. Celotto and T.J. Bastow: Acta Mater., 2001, Vol. 49, pp. 41-51.

    Article  CAS  Google Scholar 

  7. J.D. Robson: Acta Mater., 2013, Vol. 61, pp. 7781-7790.

    Article  CAS  Google Scholar 

  8. K.N. Braszcynska-Malik: J. Alloys Comp., 2009, Vol. 477, pp. 870-876.

    Article  Google Scholar 

  9. J.F. Nie: Metal. Mater. Trans. A, 2013, Vol. 43, pp. 3891-3939.

    Article  Google Scholar 

  10. N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie and M.R. Barnett: Acta Mater., 2012, Vol. 60, pp. 218-228.

    Article  CAS  Google Scholar 

  11. N. Stanford, A.S. Taylor, P. Cizek, F. Siska, M. Ramajayam and M.R. Barnett: Scr. Mater., 2012, Vol. 67, pp. 704-07.

    Article  CAS  Google Scholar 

  12. J.H. Jun: J. Alloys Comp., 2017, Vol. 725, pp. 237-241.

    Article  CAS  Google Scholar 

  13. A. Vaid, J. Guénolé, A. Prakash, S. Korte-Kerzel and E. Bitzek: Materialia, 2019, Vol. 7, 100355.

    Article  Google Scholar 

  14. M. Liao, B. Li and M.F. Horstemeyer: Comp. Mater. Sci., 2013, Vol. 79, pp. 534-539.

    Article  CAS  Google Scholar 

  15. M. Liao, B. Li and M. F Horstemeyer: Metal. Mater. Trans. A, 2014, Vol. 45, pp. 3661-3669.

    Article  CAS  Google Scholar 

  16. C. M. Cepeda-Jiménez, M. Castillo-Rodríguez and M. T. Pérez-Prado: Acta Mater., 2019, Vol. 165, pp. 164-76.

    Article  Google Scholar 

  17. J. Ragani, P. Donnadieu, C. Tassin and J.J. Blandin: Scr. Mater, 2011, Vol. 65, pp. 253-256.

    Article  CAS  Google Scholar 

  18. K. Hagihara and K. Hayakawa: Mater. Sci. Eng. A, 2018, Vol. 737, pp. 393-400.

    Article  CAS  Google Scholar 

  19. H.N. Mathus, V. Maier-Kiener and S. Korte-Kerzel: Acta Mater., 2016, Vol. 113, pp. 221-229.

    Article  Google Scholar 

  20. M.A. Gharghouri, G.C. Weatherly, J.D. Embury and J. Root, Phil. Mag. A, 1999, Vol. 79, pp. 1671-95.

    Article  CAS  Google Scholar 

  21. S.R. Kada, P.A. Lynch, J.A. Kimpton and M.R. Barnett: Acta Mater., 2016, Vol. 119, pp. 145-156.

    Article  CAS  Google Scholar 

  22. J. J. Bhattacharyya, S. R. Kada, M. R. Barnett and S. R. Agnew: Materialia, 2019, Vol. 6, 100308.

    Article  Google Scholar 

  23. H. Zhang, S.L. Shang, Y. Wang, A. Saengdeejing, L.Q. Chen and Z.K. Liu: Acta Mater., 2010, Vol. 58, pp. 4012-4018.

    Article  CAS  Google Scholar 

  24. H.-W. Chang, M.-X. Zhang, A. Atrens and H. Huang: J. Alloys Comp., 2014, Vol. 587, pp. 527-532.

    Article  CAS  Google Scholar 

  25. A.P. Hammersley: ESRF Internal Report, ESRF97HA02T, ``FIT2D: An Introduction and Overview’’, 1997.

  26. L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli and H.R. Wenk, Z. Krist. Suppl., 2007. Vol. 1, pp. 125–30.

    Google Scholar 

  27. J. Schindelin, C.T. Rueden, M.C. Hiner, and K.W. Eliceiri: Mol. Reprod. Dev., 2015, Vol. 82, pp. 518–529.

    Article  CAS  Google Scholar 

  28. L. Lutterotti, S. Matthies, H.-R. Wenk, A. S. Schultz, and J. W. Richardson: J. Appl. Phys., 1997, Vol. 81, pp. 594–600.

    Article  CAS  Google Scholar 

  29. S.R. Agnew, R.P. Mulay, F.J. Polesak III, C.A. Calhoun, J.J. Bhattacharyya and B. Clausen: Acta Mater., 2013, Vol. 61, pp. 3769-80.

    Article  CAS  Google Scholar 

  30. D. W. Brown, S.R. Agnew, M.A.M Bourke, T.M. Holden, S.C. Vogel and C.N. Tome (2005) Mater. Sci. Eng. A Vol. 399, pp. 1-12.

    Article  Google Scholar 

  31. S.R. Agnew, D.W. Brown and C.N. Tome: Acta Mater., 2006, Vol. 54, pp. 4841-4852.

    Article  CAS  Google Scholar 

  32. Y.H. Duan, Y. Sun, M.J. Peng, Z.Z. Guo: Solid Sta. Sci., 2011, Vol. 13, pp. 455−459.

    Article  CAS  Google Scholar 

  33. F. Wang, S. Sun, B. Yu, F. Zhang, P. Mao, Z. Liu: Trans. Nonferrous Met. Soc. China, 2016, Vol. 26, pp. 203−12.

    Article  CAS  Google Scholar 

  34. W.C. Hu, Y. Liu, X.W. Hu, D.J. Li, X.Q. Zeng, X. Yang, Y.X. Xu, X.S. Zeng, K.G. Wang, B.L Huang (2015) Philos. Mag., Vol. 95, pp. 1626-1645.

    Article  CAS  Google Scholar 

  35. Z.W. Huang, Y.H. Zhao, H. Hou and P.D. Han, Physica B, 2012, Vol. 407, pp.1075-1081.

    Article  CAS  Google Scholar 

  36. D.W. Zhou, J.S. Liu, S.H. Xu and P. Peng: Physica B, 2010, Vol. 405, pp. 2863-2868.

    Article  CAS  Google Scholar 

  37. H. Zhang, S.L. Shang, Y. Wang, A. Saengdeejing, L.Q. Chen, Z.K. Liu: Acta Mater., 2010, Vol. 58, pp. 4012-4018.

    Article  CAS  Google Scholar 

  38. G. Requena, D. Canelo-Yubero, J. Corrochano, J. Repper and G. Garces: Composites A, 2012, Vol. 43, pp. 1981-1988.

    Article  CAS  Google Scholar 

  39. G. Garcés, E. Oñorbe, P. Pérez, I. A. Denks and P. Adeva: Mater. Sci. Eng. A, 2009, Vol. 523, pp. 21-26.

    Article  Google Scholar 

  40. G. Garcés, K. Máthis, P. Pérez, J. Čapek and P. Adeva: Mater. Sci. Eng. A, 2016, Vol. 666, pp. 48-53.

    Article  Google Scholar 

  41. P. Withers, M. Preuss, A. Steuwer and J. Pang: J. Appl. Crystallogr, 2007, Vol. 40, pp. 891–904.

    Article  CAS  Google Scholar 

  42. R. Jenkins, R. Snyder: Introduction to X-ray powder diffractometry, 1996, Wiley, New York.

    Book  Google Scholar 

  43. Y.H. Zhao, H.W. Sheng, K. Lu: Acta Mater., 2001, Vol. 49, pp. 365-375.

    Article  CAS  Google Scholar 

  44. G. Garces, J. Medina, P. Pérez, K. Máthis, K. Horváth, A. Stark, N. Schell and P. Adeva: Acta Mater., 2018, Vol. 151, pp. 271-281.

    Article  CAS  Google Scholar 

  45. R.M. Wang, A. Eliezer, E. Gutman: Mater. Sci. Eng. A, 2002, Vol. 344, pp. 279-287.

    Article  Google Scholar 

  46. C.R. Hutchinson, J.F. Nie, S. Grosse: Metall. Mater. Trans. A., 2005, Vol. 36, pp. 2093-2105.

    Article  Google Scholar 

  47. S. Si, J. WI. P. Jones, Y.L. Chiu: Philos. Mag., https://doi.org/10.1080/14786435.2020.1802077.

  48. X. Ma, Q.J. Laszlo, J. Kecskes, J. A. El-Awady, T. P. Weihs (2020) Acta Mater. 189, 35-46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-R. The Deutsches-Elektronen-Synchrotron DESY is acknowledged for the provision of beamtime at the P07 beamline of the Petra III synchrotron facility under the project I-20170054EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Garces.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 16, 2020; accepted March 19, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garces, G., Medina, J., Chávez, B. et al. Load Partitioning Between Mg17Al12 Precipitates and Mg Phase in the AZ91 Alloy Using In-Situ Synchrotron Radiation Diffraction Experiments. Metall Mater Trans A 52, 2732–2745 (2021). https://doi.org/10.1007/s11661-021-06258-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06258-w

Navigation