Skip to main content
Log in

Interaction Between Basal Slip and a Mg17Al12 Precipitate in Magnesium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We performed molecular dynamics simulations and investigated interactions between a Mg17Al12 precipitate and a basal dislocation in magnesium. Modified embedded-atom method potentials for multiple-component systems were used in our simulations. The simulation results show that the basal dislocation is able to shear through the matrix and the precipitate/matrix interface, without creating a loop around the precipitate. The precipitate is only elastically deformed by the external shear strain. This interaction can be considered an extreme case of the Orowan mechanism when the strength of the precipitate/matrix interface is weak. Cross slip of the basal dislocation was observed when the precipitate size was 3.0 nm. The dislocation changed its slip plane to another basal plane via the \( (01\overline{1} 0) \) prismatic and the \( (0\overline{1} 11) \) pyramidal planes, creating jogs on these non-basal planes. The jogs had low mobility and debris was created when the jogs were dragged forward by the Shockley partial dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Takahashia and N. M. Ghoniem: J. Mech. Phys. Solids, 2008, vol. 56, pp. 1534–53.

    Article  Google Scholar 

  2. D.Z. Yang: Dislocations and Strengthening Mechanisms of Metals, Harbin Institute of Technology Press, Harbin, 1991.

    Google Scholar 

  3. Y. Chino, M. Kado, T. Ueda and M. Mabuchi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1965–73.

    Article  Google Scholar 

  4. C. Kohler, P. Kizler and S. Schmauder: Mater. Sci. Eng. A, 2005, vol. 400–401, pp. 481–84.

    Article  Google Scholar 

  5. K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita and H.M. Zbib: Int. J. Plasticity, 2006, vol. 22, pp. 713–23.

    Article  Google Scholar 

  6. J.H. Zhang, Z. Leng, S.J. Liu, J.Q. Li, M.L. Zhang and R.Z. Wu: J. Alloys Comp., 2011, vol. 509, pp. 7717– 22.

    Article  Google Scholar 

  7. K. Ono and A.W. Sommer: Metall. Trans., 1970, vol.1, pp. 877–84.

    Google Scholar 

  8. G. Fribourg, Y. Brechet, A. Deschamps and A. Simar: Acta Mater., 2011, vol. 59, pp. 3621–35.

    Article  Google Scholar 

  9. M.X. Zhang and P.M. Kelly: Scripta Mater., 2003, vol. 48, pp. 647–52.

    Article  Google Scholar 

  10. S. Celotto and T.J. Bastow: Acta Mater., 2001, vol. 49, pp. 41–51.

    Article  Google Scholar 

  11. S. Celotto: Acta Mater., 2000, vol. 48, pp.1775–87.

    Article  Google Scholar 

  12. C.R. Hutchinson, J.F. Nie and S. Gorsse: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2093–105.

    Article  Google Scholar 

  13. J.B. Clark: Acta Metall., 1968, vol. 16, pp. 141–52.

    Article  Google Scholar 

  14. J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009–15.

    Article  Google Scholar 

  15. J.D. Robson, N. Stanford and M.R. Barnett: Acta Mater., 2011, vol. 59, pp. 1945–56.

    Article  Google Scholar 

  16. J.F. Nie: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3891–939.

    Article  Google Scholar 

  17. B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra and M.I. Baskes: Phys. Rev. B, 2012, vol. 85, p. 245102.

    Article  Google Scholar 

  18. X.Y. Liu, P.P. Ohotnicky, J.B. Adams, C.L. Rohrer, and R.W. Hyland, Jr.: Surf. Sci., 1997, vol. 373, pp. 357–70.

    Article  Google Scholar 

  19. D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma and D.J. Srolovitz: Phys. Rev. B, 2006, vol. 73, p. 024116.

    Article  Google Scholar 

  20. J.A. Yasi, T. Nogaret, D.R. Trinkle, Y. Qi, L.G. Hector Jr and W.A. Curtin: Model. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 055012.

    Article  Google Scholar 

  21. B. Jelinek, J. Houze, S. Kim, M.F. Horstemeyer, M.I. Baskes and S. Kim: Phys. Rev. B, 2007, vol. 75, p. 054106.

    Article  Google Scholar 

  22. M. Liao, B. Li and M.F. Horstemeyer: Comput. Mater. Sci., 2013, vol. 79, pp. 534–39.

    Article  Google Scholar 

  23. M. Liao, B. Li and M.F. Horstemeyer: Scripta Mater., 2013, vol. 69, pp. 246–49.

    Article  Google Scholar 

  24. M.A. Gharghouri, G.C. Weatherly and J.D. Embury: Phil. Mag. A, 1998, vol. 78, pp. 1137–49.

    Article  Google Scholar 

  25. A. Stukowski: Model. Simul. Mater. Sci. Eng., 2010, vol.18, p. 015012.

    Article  Google Scholar 

  26. A. Stukowski and K. Albe: Model. Simul. Mater. Sci. Eng., 2010, vol.18, p. 025016.

    Article  Google Scholar 

  27. Y.X. Zhu, Z.H. Li and M.Sh. Huang: Comput. Mater. Sci., 2013, vol. 70, pp. 178–86.

    Article  Google Scholar 

  28. J. Wang, R.G. Hoagland, J.P. Hirth and A. Misra: Acta Mater., 2008, vol. 56, pp. 5685–93.

    Article  Google Scholar 

  29. J.X. Zhang, J.C. Wang, H. Harada and Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623–33.

    Article  Google Scholar 

  30. T. Zhu and C.Y. Wang: Phys. Rev. B, 2005, vol. 72, p. 014111.

    Article  Google Scholar 

  31. J.A. Yasi, L.G. Hector Jr. and D.R. Trinkle: Acta Mater., 2012, vol. 60, pp. 2350–58.

    Article  Google Scholar 

  32. A. Akhtar and E. Teghtsoonian: Acta Metall., 1969, vol. 17, pp. 1351–56.

    Article  Google Scholar 

  33. X.L. Wu, B. Li and E. Ma: Appl. Phys. Lett., 2007, vol. 91, p. 141908.

    Article  Google Scholar 

  34. B. Li and E. Ma: Phil. Mag., 2009, vol. 89, pp. 1223–35.

    Article  Google Scholar 

Download references

Acknowledgments

M.L. is grateful for the support from the Key Project of Sichuan Provincial Education Department (No. 10ZA101), the Key Lab of Ministry of Education of China (No. SBZDPY-11-22), and the Scientific Research Fund of Xihua University (No. R0620204). B.L. and M.F.H. thank the support from the Center for Advanced Vehicular Systems, Mississippi State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liao.

Additional information

Manuscript submitted August 12, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, M., Li, B. & Horstemeyer, M.F. Interaction Between Basal Slip and a Mg17Al12 Precipitate in Magnesium. Metall Mater Trans A 45, 3661–3669 (2014). https://doi.org/10.1007/s11661-014-2284-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2284-3

Keywords

Navigation