Skip to main content
Log in

Improved Distribution and Uniformity of α-Al(Mn,Cr)Si Dispersoids in Al-Mg-Si-Cu-Mn (6xxx) Alloys by Two-Step Homogenization

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The recrystallization behaviors of deformed 6xxx aluminum alloys can be effectively controlled with α-Al(Mn,Cr)Si dispersoids by pinning or slowing the movement of dislocations. However, abnormal grain growth still often occurs due to the nonuniform distribution of α-Al(Mn,Cr)Si dispersoids. In the present study, the uniformity of dispersoids was significantly improved by applying two-step homogenization heat treatments. The effect of different homogenization conditions on the distribution of the α-Al(Mn,Cr)Si dispersoid was evaluated. By applying traditional one-step homogenization at 550 °C for 10 hours, the dispersoids exhibited sparse and nonuniform precipitation at the center of grains or dendritic arms. These areas with a nonuniform distribution of dispersoids were regarded as coarse dispersoid zones (CDZs). Relative to one-step homogenization, two-step homogenization led to a considerable reduction in the percentage of CDZ area from approximately 7 pct to less than 2.5 pct. This result was due to the diffusion of solute elements and the precipitation of metastable Mg2Si and Q phases because of isothermal holding during the first step. Metastable Mg2Si and Q phases could act as nucleation sites to promote the precipitation of α-Al(Mn,Cr)Si dispersoids. As a result, α-Al(Mn,Cr)Si dispersoids exhibited uniform precipitation, and the formation of CDZs was avoided. Two-step homogenization also improved the recrystallization resistance of the alloy because of the decrease in the percentage of CDZ area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W. H. Van Geertruyden, H. M. Browne, W. Z. Misiolek, P. T. Wang: Metallurgical and Materials Transactions A, 2005, vol. 36, pp. 1049-1056.

    Article  Google Scholar 

  2. A. R. Eivani, J. Zhou, J. Duszczyk: Philosophical Magazine, 2016, vol. 96, pp. 1188-1196.

    Article  CAS  Google Scholar 

  3. Y. Xu, H. Nagaumi, Y. Han, G. Zhang, T. Zhai: Metallurgical and Materials Transactions A, 2017, vol. 48, pp. 1355-1365.

    Article  CAS  Google Scholar 

  4. K. Huang, K. Zhang, K. Marthinsen, R. E. Logé: Acta Materialia, 2017, vol. 141, pp. 360-373.

    Article  CAS  Google Scholar 

  5. S. Tangen, K. Sjølstad, T. Furu, E. Nes: Metallurgical and Materials Transactions A, 2010, vol. 41, pp. 2970-2983.

    Article  Google Scholar 

  6. K. Liu, X. G. Chen: Materials & Design, 2015, vol. 84, pp. 340-350.

    Article  CAS  Google Scholar 

  7. Y. J. Li, L. Arnberg: Acta Materialia, 2003, vol. 51, pp. 3415-3428.

    Article  CAS  Google Scholar 

  8. K. Liu, H. Ma, X. G. Chen: Journal of Alloys and Compounds, 2017, vol. 694, pp. 354-365.

    Article  CAS  Google Scholar 

  9. Z. Li, Z. Zhang, X. G. Chen: Materials Science and Engineering: A, 2018, vol. 729, pp. 196-207.

    Article  CAS  Google Scholar 

  10. A. M. F. Muggerud, E. A. Mørtsell, Y. Li, R. Holmestad: Materials Science and Engineering: A, 2013, vol. 567, pp. 21-28.

    Article  CAS  Google Scholar 

  11. Z. Li, Z. Zhang, X.-G. Chen: Metals, 2018, vol. 8, p. 155.

    Article  Google Scholar 

  12. Z. Li, Z. Zhang, X. G. Chen: Materials Science and Engineering: A, 2017, vol. 708, pp. 383-394.

    Article  CAS  Google Scholar 

  13. H. Hirasawa: Scripta Metallurgica, 1975, vol. 9, pp. 955-958.

    Article  CAS  Google Scholar 

  14. L. Lodgaard, N. Ryum: Materials Science and Engineering: A, 2000, vol. 283, pp. 144-152.

    Article  Google Scholar 

  15. Z. Li, Z. Zhang, X. G. Chen: Metallurgical and Materials Transactions A, 2018, vol. 49, pp. 5799-5814.

    Article  CAS  Google Scholar 

  16. C. L. Liu, Q. Du, N. C. Parson, W. J. Poole: Scripta Materialia, 2018, vol. 152, pp. 59-63.

    Article  CAS  Google Scholar 

  17. Q. Du, W. J. Poole, M. A. Wells, N. C. Parson: Acta Materialia, 2013, vol. 61, pp. 4961-4973.

    Article  CAS  Google Scholar 

  18. Y. Birol: Journal of Materials Processing Technology, 2004, vol. 148, pp. 250-258.

    Article  CAS  Google Scholar 

  19. N. C. W. Kuijpers, J. Tirel, D. N. Hanlon, S. van der Zwaag: Materials Characterization, 2002, vol. 48, pp. 379-392.

    Article  CAS  Google Scholar 

  20. S. Kumar, P. S. Grant, K. A. Q. O’Reilly: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 3000-3014.

    Article  CAS  Google Scholar 

  21. N. Bayat, T. Carlberg, M. Cieslar: Journal of Physics and Chemistry of Solids, 2019, vol. 130, pp. 165-171.

    Article  CAS  Google Scholar 

  22. N. Bayat, T. Carlberg, M. Cieslar: Journal of Alloys and Compounds, 2017, vol. 725, pp. 504-509.

    Article  CAS  Google Scholar 

  23. H. Tanihata, T. Sugawara, K. Matsuda, S. Ikeno: Journal of Materials Science, 1999, vol. 34, pp. 1205-1210.

    Article  CAS  Google Scholar 

  24. M. S. Remøe, I. Westermann, K. Marthinsen: Metals, 2018, vol. 9, p. 26.

    Article  Google Scholar 

  25. Y. J. Li, A. M. F. Muggerud, A. Olsen, T. Furu: Acta Materialia, 2012, vol. 60, pp. 1004-1014.

    Article  CAS  Google Scholar 

  26. F. Qian, S. Jin, G. Sha, Y. Li: Acta Materialia, 2018, vol. 157, pp. 114-125.

    Article  CAS  Google Scholar 

  27. Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia, G. Huang: Materials Science and Engineering: A, 2016, vol. 662, pp. 204-213.

    Article  CAS  Google Scholar 

  28. R. Smith: Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 3258-3279.

    Article  CAS  Google Scholar 

  29. K. E. Knipling, D. C. Dunand, D. N. Seidman: Zeitschrift für Metallkunde, 2006, vol. 97, pp. 246-265.

    Article  CAS  Google Scholar 

  30. M. Patrick Dugan, T. Tsakalakos: Superlattices and Microstructures, 1988, vol. 4, pp. 565-570.

  31. S.-i. Fujikawa, K.-i. Hirano, Y. Fukushima: Metallurgical Transactions A, 1978, vol. 9, pp. 1811-1815.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by Shandong Weiqiao Pioneering Group Co., Ltd., National Natural Science Foundation of China (Grant No. U1864209) and China Postdoctoral Foundation Grant (Grant No. 2018M642309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Qin or Hiromi Nagaumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 22, 2019; accepted March 10, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Qin, J., Zhang, H. et al. Improved Distribution and Uniformity of α-Al(Mn,Cr)Si Dispersoids in Al-Mg-Si-Cu-Mn (6xxx) Alloys by Two-Step Homogenization. Metall Mater Trans A 52, 3204–3220 (2021). https://doi.org/10.1007/s11661-021-06243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06243-3

Navigation