Skip to main content
Log in

Interdiffusion of Elements During Ultrasonic Additive Manufacturing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper reports evidence for enhanced elemental interdiffusion during ultrasonic additive manufacturing (UAM) across metal boundaries of copper-aluminum, nickel-gold, and nickel-gold-aluminum. The high solute interdiffusion measured by energy dispersive X-ray spectroscopy line scans is rationalized with calculated vacancy concentrations orders of magnitude larger than thermal equilibrium values. The above estimates are supported by existing knowledge related to defect physics and UAM thermal cycles. The observation of pronounced elemental mixing are evidence for the presence of enhanced non-equilibrium immiscible metal interdiffusion during UAM processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.M. Petrie, N. Sridharan, A. Hehr, M. Norfolk, J. Sheridan, Advanced Manufacturing and Material Science: General, vol. 120 (Springer, Cham, 2019), pp. 438–441

    Google Scholar 

  2. D.R. White, Adv. Mater. Process. 161, 64–65 (2003)

    Google Scholar 

  3. US 6,519,500 B1: United States Patent, 2003.

  4. D.E. Schick: Characterization of Aluminum 3003 Ultrasonic Additive Manufacturing, Ohio State University, 2009.

  5. R.F. Tylecote, The Solid Phase Welding of Metals (Edwards Arnold, London, 1968).

    Google Scholar 

  6. Fabrasonic: Ultrasonic additive manufacturing, https://www.youtube.com/watch?v=5s0J-7W4i6s. Accessed 1 Oct 2019.

  7. R.J. Friel, R.A. Harris, Procedia CIRP 6, 35–40 (2013)

    Article  Google Scholar 

  8. H.T. Fujii, S. Shimizu, Y.S. Sato, H. Kokawa, Scripta Mater. 135, 125–129 (2017)

    Article  CAS  Google Scholar 

  9. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61, 315–360 (2016)

    Article  Google Scholar 

  10. R.R. Dehoff, S.S. Babu, Acta Mater. 58, 4305–4315 (2010)

    Article  CAS  Google Scholar 

  11. M.R. Sriraman, S.S. Babu, M. Short, Scripta Mater. 62, 560–563 (2010)

    Article  CAS  Google Scholar 

  12. T. Monaghan, A.J. Capel, S.D. Christie, R.A. Harris, R.J. Friel, Composites A 76, 181–193 (2015)

    Article  CAS  Google Scholar 

  13. C. Petrie, N. Sridharan, C. Frederick, T. McFalls, S. Suresh Babu, A. Hehr, M. Norfolk, and J. Sheridan: 11th Nucl. Plant Instrum., Control. Hum.–Mach. Interface Technol. NPIC HMIT 2019, 2019, pp. 459–68.

  14. A. Hehr, M. Norfolk, J. Wenning, J. Sheridan, P. Leser, P. Leser, J.A. Newman, JOM 70, 315–320 (2018)

    Article  CAS  Google Scholar 

  15. N. Sridharan, P. Wolcott, M. Dapino, S.S. Babu, Scripta Mater. 117, 1–5 (2016)

    Article  CAS  Google Scholar 

  16. M.R. Sriraman, M. Gonser, H.T. Fujii, S.S. Babu, M. Bloss, J. Mater. Process. Technol. 211, 1650–1657 (2011)

    Article  CAS  Google Scholar 

  17. M.R. Sriraman, M. Gonser, D. Foster, H.T. Fujii, S.S. Babu, M. Bloss, Metall. Mater. Trans. B 43B, 133–144 (2012)

    Article  Google Scholar 

  18. F. Haddadi, D. Tsivoulas, Mater. Charact. 118, 340–351 (2016)

    Article  CAS  Google Scholar 

  19. Y.C. Chen, D. Bakavos, A. Gholinia, P.B. Prangnell, Acta Mater. 60, 2816–2828 (2012)

    Article  CAS  Google Scholar 

  20. V.K. Patel, S.D. Bhole, D.L. Chen, Scripta Mater. 65, 911–914 (2011)

    Article  CAS  Google Scholar 

  21. A.A. Ward, M.R. French, D.N. Leonard, Z.C. Cordero, J. Mater. Process. Technol. 254, 373–382 (2018)

    Article  CAS  Google Scholar 

  22. H.T. Fujii, Y. Goto, Y.S. Sato, H. Kokawa, Scripta Mater. 116, 135–138 (2016)

    Article  CAS  Google Scholar 

  23. I.E. Gunduz, T. Ando, E. Shattuck, P.Y. Wong, C.C. Doumanidis, Scripta Mater. 52, 939–943 (2005)

    Article  CAS  Google Scholar 

  24. J.M. López-Higuera, L.R. Cobo, A.Q. Incera, A. Cobo, J. Light Technol. 29, 587–608 (2011)

    Article  Google Scholar 

  25. H.N. Li, D.S. Li, G.B. Song, Eng. Struct. 26, 1647–1657 (2004)

    Article  Google Scholar 

  26. C.M. Petrie, N. Sridharan, M. Subramanian, A. Hehr, M. Norfolk, J. Sheridan, Smart Mater. Struct. 28, 055012 (2019)

    Article  CAS  Google Scholar 

  27. A.D. Kersey, IEICE Trans. Electron. 83, 400–404 (2000)

    Google Scholar 

  28. T.K. Kragas, B.A. Williams, and G.A. Myers: SPE Annu. Tech. Conf. Exhib., 2001.

  29. M.A.S. Zaghloul, A. Yan, R. Chen, M.J. Li, R. Flammang, M. Heibel, K.P. Chen, IEEE Trans. Nucl. Sci. 64, 2569–2577 (2017)

    Article  CAS  Google Scholar 

  30. C.Y. Kong, R. Soar, Appl. Opt. 44, 6325 (2005)

    Article  CAS  Google Scholar 

  31. Y. Li, Z. Hua, F. Yan, P. Gang, Opt. Fiber Technol. 15, 391–397 (2009)

    Article  CAS  Google Scholar 

  32. D. Baudrand, J. Bengston, Met. Finish. 93, 55–57 (1995)

    Article  CAS  Google Scholar 

  33. S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman, S.S. Babu, Acta Mater. 74, 234–243 (2014)

    Article  CAS  Google Scholar 

  34. N. Sridharan, M. Norfolk, S.S. Babu, Metall. Mater. Trans. A 47A, 2517–2528 (2016)

    Article  Google Scholar 

  35. C.-H. Kuo, N. Sridharan, T. Han, M.J. Dapino, S.S. Babu, Sci. Technol. Weld. Join. 24, 382–390 (2019)

    Article  CAS  Google Scholar 

  36. N. Sridharan, P. Wolcott, M. Dapino, S.S. Babu, Sci. Technol. Weld. Join. 22, 373–380 (2016)

    Article  Google Scholar 

  37. N. Sridharan, J. Poplawsky, A. Vivek, A. Bhattacharya, W. Guo, H. Meyer, Y. Mao, T. Lee, G. Daehn, Mater. Charact. 151, 119–128 (2019)

    Article  CAS  Google Scholar 

  38. N. Sridharan, D. Isheim, D.N. Seidman, S.S. Babu, Scripta Mater. 130, 196–199 (2017)

    Article  CAS  Google Scholar 

  39. I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Natl Acad. Sci. U S A 111, 4386–4390 (2014)

    Article  CAS  Google Scholar 

  40. A. Misra, L. Thilly, MRS Bull. 37, 965–972 (2012)

    Google Scholar 

  41. A.A. Ward, Z.C. Cordero, Scripta Mater. 177, 101–105 (2020)

    Article  CAS  Google Scholar 

  42. J.M. Sietins, J.W. Gillespie, S.G. Advani, J. Mater. Res. 29, 1970–1977 (2014)

    Article  CAS  Google Scholar 

  43. P.J. Wolcott, N. Sridharan, S.S. Babu, A. Miriyev, N. Frage, M.J. Dapino, Sci. Technol. Weld. Join. 21, 114–123 (2016)

    Article  CAS  Google Scholar 

  44. J.O. Obielodan, B.E. Stucker, E. Martinez, J.L. Martinez, D.H. Hernandez, D.A. Ramirez, L.E. Murr, J. Mater. Process. Technol. 211, 988–995 (2011)

    Article  CAS  Google Scholar 

  45. R. Hahnlen, M.J. Dapino, Composites B 59, 101–108 (2014)

    Article  CAS  Google Scholar 

  46. A. Rohatgi: WebPlotDigitizer, https://automeris.io/WebPlotDigitizer. Accessed 1 Nov 2020.

  47. J. Dixon, Meas. Control 20, 11–16 (1987)

    Article  Google Scholar 

  48. V. Button, Principles of Measurement and Transduction of Biomedical Variables (Academic, Amsterdam, 2015), pp. 101–154

    Book  Google Scholar 

  49. A.S. Morris, R. Langari, Measurement and Instrumentation: Theory and Application-Chapter (Auris Reference Limited, London, 2012).

    Google Scholar 

  50. Omega: Thermocouple Sensors, Connected Wire, Surface Probes Accessories. Omega, Norwalk

  51. Omega: Unsheathed Fine Gage Thermocouples. Omega, Norwalk

  52. Newportus, Unsheathed Fine Gage Thermocouples—J, K, T, E, R and S (Newport Electronics, Santa Ana, 2020).

    Google Scholar 

  53. Lake Shore Cryotronics, Cernox Technical Specifications (Lake Shore Cryotronics, Westerville, 2019).

    Google Scholar 

  54. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book (Elsevier, Amsterdam, 2004).

    Google Scholar 

  55. N. Matsuno, H. Oikawa, Can. Metall. Q. 14, 315–318 (1975)

    Article  Google Scholar 

  56. P. Shewmon, Diffusion in Solids, The Minerals, Metals and Materials Series, The Minerals, Metals and Materials Series, 2nd edn. (Springer, Cham, 1979).

    Google Scholar 

  57. R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials (Wiley, Hoboken, 2005).

    Book  Google Scholar 

  58. J. Philibert: J. Basic Princ. Diffus. Theory Exp. Appl. 2, 1–10 (2005).

    Google Scholar 

  59. A. Einstein, Investigations on the Theory of Brownian Movement (Dover Publications, Inc., New York, 1956).

    Google Scholar 

  60. A. Smigelskas, E. Kirkendall, AIME XIII, 130 (1946)

    Google Scholar 

  61. H. Nakajirna, JOM 49, 15–19 (1997)

    Article  Google Scholar 

  62. K.L. Murty, I. Charit, An Introduction to Nuclear Materials (Wiley, Weinheim, 2013).

    Google Scholar 

  63. H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007).

    Book  Google Scholar 

  64. J.R. Manning, L.J. Bruner, Am. J. Phys. 36, 922–923 (1968)

    Article  Google Scholar 

  65. J.R. Manning, Acta Mater. 15, 817–826 (1967)

    Article  CAS  Google Scholar 

  66. P.C.W. Holdsworth and R.J. Elliot: Philos. Mag. A 54, 601–18 (1985).

    Article  Google Scholar 

  67. P.C. Holdsworth, R.J. Elliot, Philos. Mag. A 54, 601–618 (1986)

    Article  CAS  Google Scholar 

  68. I.V. Belova, G.E. Murch, Philos. Mag. A 80, 1469–1479 (1999)

    Article  Google Scholar 

  69. K. Compaan, Y. Haven, Trans. Faraday Soc. 52, 786–801 (1956)

    Article  CAS  Google Scholar 

  70. G.L. Montet, Phys. Rev B 7, 650–662 (1973)

    Article  CAS  Google Scholar 

  71. W.G. Wolfer, Fundamental Properties of Defects in Metals, vol. 1 (Elsevier, Inc., Amsterdam, 2012).

    Google Scholar 

  72. M. Fujimoto, Thermodynamics of Crystalline States, vol. 53 (Springer, New York, 2010).

    Book  Google Scholar 

  73. W.P. Davey, Phys. Rev. 25, 753–761 (1925)

    Article  CAS  Google Scholar 

  74. R. Reed-Hill, Physical Metallurgy Principles, 4th edn. (D Van Nostrand Company, Princeton, 1964).

    Google Scholar 

  75. R. Smallman and A. Ngan: Modern Physical Metallurgy, Buttersworth & Co., 2013, pp. 287–316.

  76. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill, New York, 2016).

    Google Scholar 

  77. W.L. Johnson, Prog. Mater. Sci. 30, 81–134 (1986)

    Article  CAS  Google Scholar 

  78. R.W. Chan, Nature 273, 491 (1978)

    Google Scholar 

  79. F. Gorecki, Scripta Mater. 11, 1051 (1977)

    Article  CAS  Google Scholar 

  80. R.E. Stoller, Compr. Nucl. Mater. 1, 293–332 (2012)

    Article  CAS  Google Scholar 

  81. R.S. Averback, J Nucl Mater 216, 49–62 (1994)

    Article  CAS  Google Scholar 

  82. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R.E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, J. Nucl. Mater. 512, 450–479 (2018)

    Article  CAS  Google Scholar 

  83. S.J. Zinkle, Compr. Nucl. Mater. 1, 65–98 (2012)

    Article  CAS  Google Scholar 

  84. H. Okamoto and T.B. Massalski: Phase Diagrams for Binary Alloys, ASM International, 1991, pp. 16–30.

  85. J. Wang, X. Lu, B. Sundman, X. Su, CALPHAD 29, 263–268 (2005)

    Article  CAS  Google Scholar 

  86. S. Elangovan, S. Semeer, K. Prakasan, J. Mater. Process. Technol. 209, 1143–1150 (2009)

    Article  CAS  Google Scholar 

  87. C. Zhang, L. Li, Metall. Mater. Trans. B 40B, 196–207 (2009)

    Article  CAS  Google Scholar 

  88. Z. Feng, S.S. Babu, B.W. Riemer, M.L. Santella, J.E. Gould, M. Kimchi, Weld. Res. Abroad 49, 29–35 (2003)

    Google Scholar 

  89. R.J. Borg, G.J. Dienes, An Introduction to Solid State Diffusion (Academic, Boston, 1988).

    Google Scholar 

  90. C.J. Simensen, Metall. Mater. Trans. A 20A, 191 (1989)

    Article  CAS  Google Scholar 

  91. C. Qiu, R. Metselaar, J. Alloy Compd. 216, 55–60 (1994)

    Article  CAS  Google Scholar 

  92. L.M. Foster, G. Long, M.S. Hunter, J. Am. Ceram. Soc. 39, 1–11 (1956)

    Article  CAS  Google Scholar 

  93. K.S. Hari Kumar, V. Raghavan, J. Phase Equilib. 12, 275–286 (1991)

    Article  Google Scholar 

  94. Q. Mao: Understanding the Bonding Process of Ultrasonic Additive Manufacturing, University of Clemson, 2016.

  95. D. Pal and B. Stucker: J. Appl. Phys. https://doi.org/10.1063/1.4807831.

  96. M.R. Sriraman, H.T. Fujii, M. Gonser, S.S. Babu, and M. Short: 21st Annu. Int. Solid Free Fabr. Symp. Addit. Manuf. Conf. SFF 2010, 2010, pp. 372–82.

  97. H. Ji, J. Wang, and M. Li: 2012 Int. Conf. Electron. Packag. Technol. High Density Packag., 2012, pp. 1586–89.

  98. N. Sridharan, M.N. Gussev, C.M. Parish, D. Isheim, D.N. Seidman, K.A. Terrani, S.S. Babu, Mater. Charact. 139, 249–258 (2018)

    Article  CAS  Google Scholar 

  99. H.T. Fujii, M.R. Sriraman, S.S. Babu, Metall. Mater. Trans. A 42A, 4045–4055 (2011)

    Article  Google Scholar 

  100. R.W. Cahn, Recovery and Recrystallization, 4th edn. (Elsevier B.V., Amsterdam, 1996).

    Google Scholar 

  101. K. Huang, R.E. Logé, Mater. Des. 111, 548–574 (2016)

    Article  CAS  Google Scholar 

  102. K. Aust, J. Rutter, Trans. AIME 215, 119 (1959)

    CAS  Google Scholar 

  103. Q. Ma, C.L. Liu, J.B. Adams, R.W. Balluffi, Acta Metall. Mater. 41, 143–151 (1993)

    Article  CAS  Google Scholar 

  104. Y. Mishin, C. Herzig, Mater. Sci. Eng. A A260, 55–71 (1999)

    Article  CAS  Google Scholar 

  105. Y. Mishin, C. Herzig, J. Bernardini, W. Gust, Int. Mater. Rev. 42, 155–178 (1997)

    Article  CAS  Google Scholar 

  106. J.I. Goldstein, D.E. Newburg, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin, Scanning Electron Microscopy and Microanalysis (Plenum Press, New York, 1975).

    Google Scholar 

  107. J.E. Mueller, J.W. Gillespie, S.G. Advani, Scanning 35, 327–335 (2013)

    Article  CAS  Google Scholar 

  108. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103–189 (2000)

    Article  CAS  Google Scholar 

  109. M.C. Chen, C.C. Hsieh, W. Wu, Met. Mater. Int. 13, 201–205 (2007)

    Article  CAS  Google Scholar 

  110. M.C. Chen, H.C. Hsieh, W. Wu, J. Alloys Compd. 416, 169–172 (2006)

    Article  CAS  Google Scholar 

  111. S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Acta Mater. 55, 2885–2895 (2007)

    Article  CAS  Google Scholar 

  112. D. Raabe, S. Ohsaki, K. Hono, Acta Mater. 57, 5254–5263 (2009)

    Article  CAS  Google Scholar 

  113. R. Jamaati, M.R. Toroghinejad, Mater. Sci. Technol. 27, 1101–1108 (2011)

    Article  CAS  Google Scholar 

  114. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)

    Article  CAS  Google Scholar 

  115. N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, Adv. Eng. Mater. 5, 338–344 (2003)

    Article  CAS  Google Scholar 

  116. N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa, Scripta Mater. 40, 795–800 (1999)

    Article  CAS  Google Scholar 

  117. R. Jamaati, M.R. Toroghinejad, Mater. Sci. Eng. A 527, 2320–2326 (2010)

    Article  Google Scholar 

  118. B. Langenecker, IEEE Trans. Sonics Ultrason. 13, 1–8 (1966)

    Article  Google Scholar 

  119. D. Hull, D.J. Bacon, Introduction to Dislocations, 5th edn. (Elsevier Ltd., Oxford, 2011).

    Google Scholar 

  120. D.S. Colanto: Electrical Resistivity Measurements to Assess Vacancy Concentration in Aluminum During Ultrasonic Deformation and Vibratory Consolidation of Aluminum-Carbon Nanotube Composites, Northeastern University, 2010.

  121. V.E. Cosslett, R.N. Thomas, Br. J. Appl. Phys 15, 1283–1300 (1964)

    Article  CAS  Google Scholar 

  122. D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Springer, New York, 2011).

    Google Scholar 

Download references

Acknowledgments

This research is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle LLC, for the US Department of Energy. Adam Hehr and Mark Norfolk (Fabrisonic LLC, Columbus, Ohio) fabricated the embedded fiber samples. Dorothy Coffey assisted in TEM lamella fabrication. Metallography and optical microscopy were performed in the ORNL Manufacturing Demonstration Facility (MDF). SEM and EDS Bruker analysis were performed in the ORNL High Temperature Materials Laboratory (HTML). TEM was performed in the ORNL Low Activation Materials Development and Analysis Laboratory (LAMDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 17, 2020; accepted December 13, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagan, M., Petrie, C., Leonard, D. et al. Interdiffusion of Elements During Ultrasonic Additive Manufacturing. Metall Mater Trans A 52, 1142–1157 (2021). https://doi.org/10.1007/s11661-020-06131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06131-2

Navigation