Skip to main content
Log in

Quantitative Evaluation of Bulk and Interface Microstructures in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrasonically consolidated 3003 aluminum alloy builds were prepared with constituent tapes by using a very high power ultrasonic additive manufacturing (UAM) process. Microstructures of interface and bulk regions were quantitatively characterized using the electron backscattered diffraction technique. The interface microstructure consists of equiaxed grains. The 〈111〉 crystallographic directions of these grains were aligned with the normal direction of the specimen, confirming a shear deformation mode at these regions. In addition, due to recrystallization, the density of low-angle grain boundaries also significantly decreased. In contrast, original elongated grains and partially recrystallized grains were observed in the bulk region of the tape. These elongated grains correspond to rolling texture components of face-centered-cubic materials. The preceding microstructure gradients are rationalized based on the accumulated thermomechanical cycles during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In this document, tapes and foils are used interchangeably to allow for better readability.

  2. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

  3. TSL OIM is a trademark of EDAX Inc., Draper, UT.

References

  1. D. Schick, R.M. Hahnlen, R. Dehoff, P. Collins, S.S. Babu, M.J. Dapino, and J.C. Lippold: Weld. J., 2010, vol. 89, pp. 105–15.

    Google Scholar 

  2. D.R. White: Adv. Mater. Process., 2003, vol. 161, pp. 64–65.

    Google Scholar 

  3. C.Y. Kong, R.C. Soar, and P.M. Dickens: J. Mater. Process. Technol., 2004, vol. 146, pp. 181–87.

    Article  CAS  Google Scholar 

  4. C.Y. Kong, R.C. Soar, and P.M. Dickens: Composite Struct., 2004, vol. 66, pp. 421–27.

    Article  Google Scholar 

  5. G.D.J. Ram, Y. Yang, and B.E. Stucker: J. Manufact. Sys., 2006, vol. 25, pp. 221–38.

    Article  Google Scholar 

  6. G.D.J. Ram, C. Robinson, Y. Yang, and B.E. Stucker: Rapid Prototyping J., 2007, vol. 13, pp. 226–35.

    Article  Google Scholar 

  7. D. Li and R.C. Soar: Mater. Sci. Eng. A, 2008, vol. 498, pp. 421–29.

    Article  Google Scholar 

  8. D. Li and R.C. Soar: J. Eng. Mater. Technol., 2009, vol. 131, pp. 021016-1–021016-6.

    Google Scholar 

  9. C. Zhang and L. Li: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 196–207.

    Article  CAS  Google Scholar 

  10. M. Kulakov and H.J. Rack: J. Eng. Mater. Technol., 2009, vol. 131, pp. 021006-1–021006-6.

    Article  Google Scholar 

  11. Y. Yang, G.D.J. Ram, and B.E. Stucker: J. Mater. Process. Technol., 2009, vol. 209, pp. 4915–24.

    Article  CAS  Google Scholar 

  12. M.R. Sriraman, S.S. Babu, and M. Short: Scripta Mater., 2010, vol. 62, pp. 560–63.

    Article  CAS  Google Scholar 

  13. R.R. Dehoff and S.S. Babu: Acta Mater., 2010, vol. 58, pp. 4305–15.

    Article  CAS  Google Scholar 

  14. M.R. Sriraman, H. Fujii, M. Gonser, S.S. Babu, and M. Short: Proc. SFF Symp., 2010, pp. 372–82.

  15. H.J. Bunge: Texture Analysis in Materials Science, Butterworth and Co., London, 1982.

  16. J.K. Mackenzie: Acta Metall., 1964, vol. 12, pp. 223–25.

    Article  CAS  Google Scholar 

  17. M.R. Sriraman, M. Gonser, H. Fujii, S.S. Babu, and M. Bloss: J. Mater. Process. Technol., 2011, vol. 211, pp. 1650–57.

    Article  CAS  Google Scholar 

  18. H. Paul and J.H. Driver: Bull. Pol. Acad. Sci.-Technol., 2006, vol. 54, pp. 209–20.

    CAS  Google Scholar 

  19. Z. Jasieński and A. Piatkowski: Adv. Eng. Mater., 2010, vol. 12, pp. 1068–76.

    Article  Google Scholar 

  20. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  21. E. Mariani and E. Ghassemieh: Acta Mater., 2010, vol. 58, pp. 2492–2503.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Ohio Department of Development for funding this research work through the Third Frontier Wright Projects program. The support received from Dr. Karl Graff, Matt Short, Paul Boulware, and other colleagues from EWI is greatly appreciated. One of the authors (HTF) also thanks the Japan Society for Promotion of Science for providing the scholarship for this collaborative research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi T. Fujii.

Additional information

Manuscript submitted February 8, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, H.T., Sriraman, M.R. & Babu, S.S. Quantitative Evaluation of Bulk and Interface Microstructures in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing. Metall Mater Trans A 42, 4045–4055 (2011). https://doi.org/10.1007/s11661-011-0805-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0805-x

Keywords

Navigation