Skip to main content
Log in

Correlating the Five-Parameter Grain Boundary Character Distribution and Corrosion Behavior of Zinc-Carbon Nanotube Composite Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain boundary engineering (GBE) of coatings using optimum weight fractions of foreign inclusions can improve corrosion resistance performance. This is illustrated here by correlating the corrosion behavior with the five-parameter grain boundary character distribution analysis of Zn-carbon nanotube (Zn-CNT) composite coatings. Zn-CNT composite coatings with different volume fractions of CNTs were electrodeposited on mild steel substrates by dispersing different amounts of CNTs (4, 6, 8, 10, 15, and 20 mg/L) in the Zn electrolyte bath. All the coatings exhibited compact and crack-free morphology. Electrochemical impedance spectroscopy (EIS) measurements were conducted in 3.5 wt pct NaCl solution. The Nyquist and Bode plots showed a decrease in the coating corrosion rate with initial CNT addition up to the Zn-CNT3 coating (produced from 8 mg/L of CNT in the electrolyte), after which the corrosion resistance decreased with continued addition of CNTs. This showed that an optimum exists for CNT in the Zn coating to achieve high corrosion resistance performance. Orientation distribution maps from the coating cross section were acquired using the electron backscatter diffraction (EBSD) technique for correlating the microstructure with the corrosion data. The lower corrosion rate in the Zn-CNT3 coating was attributed to the strong basal plane texture in grains along the growth direction. The angle/axis misorientation showed that most grain boundaries have [\( 2\overline{11} 0 \)] and [\( 10\bar{1}0 \)] axis misorientations signifying special grain boundaries. The five-parameter analysis showed that these grain boundaries are mostly symmetric and tilt boundaries, which are low-energy boundaries, whereas in Zn and Zn-CNT6 (produced from 20 mg/L of CNT in the electrolyte) coatings, the higher corrosion rates were due to the high fraction of high-angle grain boundaries (HAGBs), grain texture along the growth direction that corresponds to an orientation that is active in the corrosive environment, and the absence of special grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman, and G.T. Owen: Acta Mater., 2008, vol. 56, pp. 2363–73.

    Article  CAS  Google Scholar 

  2. S. Yang, Z.J. Wang, H. Kokawa, and Y.S. Sato: J. Mater. Sci., 2007, vol. 42, pp. 847–53.

    Article  CAS  Google Scholar 

  3. C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, and M.L. Taheri: Acta Mater., 2018, vol. 144, pp. 281–91.

    Article  CAS  Google Scholar 

  4. C.S. Kim, Y. Hu, G.S. Rohrer, and V. Randle: Scr. Mater., 2005, vol. 52, pp. 633–7.

    Article  CAS  Google Scholar 

  5. M. Coleman and V. Randle: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 2175–83.

  6. A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, and S. Xia: Acta Metall. Sin. (English Lett.), 2014, vol. 27, pp. 730–38.

  7. S. Xia, H. Li, T.G. Liu, and B.X. Zhou: J. Nucl. Mater., 2011, vol. 416, pp. 303–10.

    Article  CAS  Google Scholar 

  8. M. Kumar, A.J. Schwartz, and W.E. King: Acta Mater., 2002, vol. 50, pp. 2599–612.

    Article  CAS  Google Scholar 

  9. V. Randle: Acta Mater., 1999, vol. 47, pp. 4187–96.

    Article  CAS  Google Scholar 

  10. V. Randle, G.S. Rohrer, and Y. Hu: Scr. Mater., 2008, vol. 58, pp. 183–6.

    Article  CAS  Google Scholar 

  11. H. Beladi, Q. Chao, and G.S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478–89.

    Article  CAS  Google Scholar 

  12. H. Beladi, A. Ghaderi, and G.S. Rohrer: Philos. Mag., 2020, vol. 100, pp. 456–66.

    Article  CAS  Google Scholar 

  13. M.N. Kelly, K. Glowinski, N.T. Nuhfer, and G.S. Rohrer: Acta Mater., 2016, vol. 111, pp. 22–30.

    Article  CAS  Google Scholar 

  14. I. Ghamarian, P. Samimi, G.S. Rohrer, and P.C. Collins: Acta Mater., 2017, vol. 130, pp. 164–76.

    Article  CAS  Google Scholar 

  15. F. Ram, J.T. Lloyd, and G.S. Rohrer: Mater. Charact., https://doi.org/10.1016/j.matchar.2019.110014.

  16. Y. Toshev, V. Mandova, N. Boshkov, D. Stoychev, P. Petrov, N. Tsvetkova, G. Raichevski, C. Tsvetanov, A. Gabev, R. Velev, and K. Kostadinov: Protective Coating of Zinc and Zinc Alloys for Industrial Applications, Woodhead Publishing Limited, 2006.

  17. G.D. Wilcox and D.R. Gabe: Corros. Sci., 1993, vol. 35, pp. 1251–8.

    Article  CAS  Google Scholar 

  18. C. Cachet, R. Wiart, and J. Zoppas-Ferreira: Electrochim. Acta, 1993, vol. 38, pp. 311–8.

    Article  CAS  Google Scholar 

  19. C. Cachet and R. Wiart: J. Electroanal. Chem., 1981, vol. 129, pp. 103–14.

    Article  CAS  Google Scholar 

  20. D. Giménez-Romero, J.J. García-Jareño, and F. Vicente: J. Electroanal. Chem., 2004, vol. 572, pp. 235–47.

    Article  Google Scholar 

  21. C. Cachet and R. Wiart: Electrochim. Acta, 1999, vol. 44, pp. 4743–51.

    Article  CAS  Google Scholar 

  22. M. Ohba, T. Scarazzato, D.C.R. Espinosa, and Z. Panossian: Electrochim. Acta, 2019, vol. 309, pp. 86–103.

    Article  CAS  Google Scholar 

  23. P.I. Nemes, M. Lekka, L. Fedrizzi, and L.M. Muresan: Surf. Coatings Technol., 2014, vol. 252, pp. 102–7.

    Article  CAS  Google Scholar 

  24. B.M. Praveen, T.V. Venkatesha, Y.A. Naik, and K. Prashantha: Synth. React. Inorg. Met. Nano Met. Chem., 2007, vol. 37, pp. 461–65.

  25. S. Hashimoto, M. Abe: Corros. Sci., 1994, vol. 36, pp. 2125–37

    Article  CAS  Google Scholar 

  26. G. Roventi, T. Bellezze, and R. Fratesi: J. Appl. Electrochem., 2013, vol. 43, pp. 839–46.

    Article  CAS  Google Scholar 

  27. A. Gupta and C. Srivastava: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2020, vol. 51, pp. 4257–73.

  28. S. Arora, N. Kumari, and C. Srivastava: J. Alloys Compd., 2019, vol. 801, pp. 449–59.

    Article  CAS  Google Scholar 

  29. M.K. Punith Kumar, M.P. Singh, and C. Srivastava: RSC Adv., 2015, vol. 5, pp. 25603–08.

  30. R. Li, J. Liang, Y. Hou, and Q. Chu: RSC Adv., 2015, vol. 5, pp. 60698–707.

    Article  CAS  Google Scholar 

  31. R. M Y and C. Srivastava: Corros. Sci., 2019, vol. 152, pp. 234–48.

  32. B.M. Praveen, T. V. Venkatesha, Y. Arthoba Naik, and K. Prashantha: Surf. Coat. Technol., 2007, vol. 201, pp. 5836–42.

  33. K. Deepak, S. Mandal, C.N. Athreya, D.I. Kim, B. de Boer, and V. Subramanya Sarma: Corros. Sci., 2016, vol. 106, pp. 293–97.

  34. A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, and V.K. Vasudevan: Acta Mater., 2016, vol. 113, pp. 180–93.

    Article  CAS  Google Scholar 

  35. D. An, T.A. Griffiths, P. Konijnenberg, S. Mandal, Z. Wang, and S. Zaefferer: Acta Mater., 2018, vol. 156, pp. 297–309.

    Article  CAS  Google Scholar 

  36. K.S. Jyotheender, A. Gupta, and C. Srivastava: Materialia, 2020, vol. 9, p. 100617.

    Article  CAS  Google Scholar 

  37. K. Morshed-Behbahani, P. Najafisayar, M. Pakshir, and M. Shahsavari: Corros. Sci., 2018, vol. 138, pp. 28–41.

    Article  CAS  Google Scholar 

  38. K.S. Jyotheender and C. Srivastava: Compos. Part B Eng., 2019, vol. 175, p. 107145.

    Article  CAS  Google Scholar 

  39. V. Ezhilselvi, H. Seenivasan, P. Bera, and C. Anandan: RSC Adv., 2014, vol. 4, pp. 46293–304.

    Article  CAS  Google Scholar 

  40. Y. Meng, L. Liu, D. Zhang, C. Dong, Y. Yan, A.A. Volinsky, and L.N. Wang: Bioact. Mater., 2019, vol. 4, pp. 87–96.

    Article  Google Scholar 

  41. A. Maciej, A. Wadas, M. Sowa, R. Socha, G. Dercz, M. Rabe, and W. Simka: Corros. Sci., 2019, vol. 158, p. 108107.

    Article  CAS  Google Scholar 

  42. M.K. Punith Kumar and C. Srivastava: Mater. Charact., 2013, vol. 85, pp. 82–91.

  43. K.E. García, A.L. Morales, C.A. Barrero, and J.M. Greneche: Corros. Sci., 2006, vol. 48, pp. 2813–30.

    Article  Google Scholar 

  44. ASTM Standard G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM standards, West Conshohocken, 2004.

  45. J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 0–22.

  46. J. Wang and I.J. Beyerlein: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 3556–69.

Download references

Acknowledgments

The authors acknowledge the research funding received from the CSIR, Government of India. Electron microscopy facilities in AFMM, IISc Bangalore, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 29, 2020, accepted October 14, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyotheender, K.S., Srivastava, C. Correlating the Five-Parameter Grain Boundary Character Distribution and Corrosion Behavior of Zinc-Carbon Nanotube Composite Coatings. Metall Mater Trans A 52, 364–377 (2021). https://doi.org/10.1007/s11661-020-06070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06070-y

Navigation