Skip to main content

Advertisement

Log in

The Formation of \( \left\{ {10\bar{1}2} \right\} \) Deformation Twin in Hybrid TiB-TiC Reinforced Titanium Matrix Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation twins play a significant role in the plastic deformation of titanium matrix composites and improve their ductility. In this work, \( \left\{ {10\bar{1}2} \right\} \) deformation twins nucleated in the parent grains with a hard orientation of prismatic slip and changed the local orientation become a soft orientation, resulting in a good balance between high strength (yield strength of 1068 ± 9 MPa and ultimate tensile strength of 1167 ± 1MPa) and high ductility (elongation of 8.7 ± 0.2 pct) at room temperature for hybrid TiB-TiC reinforced Ti-6Al-4V matrix composites. TiB, TiC and grain boundaries worked as a barrier to dislocation mobility, and resulted in different dislocation substructures distributing around the short TiB fibers and TiC particles. The strain incompatibility resulted in a high local stress concentration which promoted twin nucleation and influenced twin propagation. The nonuniform strain caused a stress gradient inside the grains, and the steep stress gradient hindered the twin propagation. Low stress was not enough to drive the dislocation slip of the twins and dislocation decomposition at the twin tips; thus, the growth of the deformation twins stopped in the parent grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] P. Qiu, Y. Han, G. Huang, J. Le, L. Lei, L. Xiao and W. Lu: Metall. Mater. Trans. A, 2020, vol. 51, pp. 2276-2290.

    Google Scholar 

  2. [2] V.A. Popov, E.V. Shelekhov, A.S. Prosviryakov, M.Y. Presniaov, B.R. Senatulin, A.D. Kotov and M.G. Khomutov: J. Alloys Compd., 2016, vol.707, pp. 365-370.

    Google Scholar 

  3. [3] J. Li, L. Wang, J. Qin, Y. Chen, W. Lu and D. Zhang: Mater. Charact, 2012, vol. 66, pp. 93-98.

    CAS  Google Scholar 

  4. [4] L.C. Zhang and H. Attar: Adv. Eng. Mater, 2016, vol. 18, pp. 463-475.

    CAS  Google Scholar 

  5. [5] M. D. Hayat, H. Singh, Z. He and P. Cao: Composites Part A, 2019, vol. 121, pp. 418-438.

    CAS  Google Scholar 

  6. [6] J. Le, Y. Han, J. Xiang, L. Lei, G. Huang and W. Lu: Metall. Mater. Trans. A, 2020, vol. 51, pp. 1732-1743.

    Google Scholar 

  7. [7] J. Yang, Y. Chen, S. Xiao, L. Xu, X. Wang, J. Tian, D. Zhang and Z. Zheng: Mater. Sci. Eng. A, 2020, vol. 788, pp. 1-10.

    Google Scholar 

  8. [8] H.K.S. Rahoma, Y.Y. Chen, X.P. Wang and S.L. Xiao: J. Alloys Compd., 2015, vol. 627, pp. 415-422.

    CAS  Google Scholar 

  9. [9] S. Li, K. Kondon, H. Imail, B. Chen, L. Jia, J. Umeda and Y. Fu: Mater. Des., 2016, vol. 95, pp. 127-132.

    CAS  Google Scholar 

  10. [10] S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia and J. Umeda: Mater. Sci. Eng. A, 2015, vol. 628, pp. 75-83.

    CAS  Google Scholar 

  11. [11] Z Y. Hu, X.W. Cheng, S.L. Li, H.M. Zhang, H. Wang, Z.H. Zhang and F.C. Wang: J. Alloys Compd., 2017, vol. 726, pp. 240-253.

    CAS  Google Scholar 

  12. [12] X. Guo, L. Wang, M. Wang, J. Qin, D. Zhang and W. Lu: Acta Mater., 2012, vol. 60, pp. 2656-2667.

    CAS  Google Scholar 

  13. [13] P. Zhou, J. N. Qin, W. J. Lu and D. Zhang: Mater. Sci. Technol., 2011, vol. 27, pp. 1788-1792.

    CAS  Google Scholar 

  14. [14] G. Huang, X. Guo, Y. Han, L. Wang, W. Lu and D. Zhang: Mater. Sci. Eng. A, 2016, vol. 667, pp. 317-325.

    CAS  Google Scholar 

  15. [15] J. Wang, X. Guo, J. Qin, D. Zhang and W. Lu: Mater. Sci. Eng. A, 2015, vol. 628, pp. 366-373.

    CAS  Google Scholar 

  16. L.J. Lu, L. Geng and H. X. Peng: Mater. Sci. Eng. A 2010, 527, 6723-6727.

    Google Scholar 

  17. [17] Z.W. Huang, P.L. Yong, N.N. Liang, and Y.S. Li: Mater, Charact, 2019, vol. 149, pp. 52-62.

    CAS  Google Scholar 

  18. [18] N.P. Gurao, R. Kapoor and S. Suwas: Acta Mater., 2011, vol. 59, pp. 3431-3446.

    CAS  Google Scholar 

  19. [19] W. Tirry, M. Nixon, O. Cazacu, F. Coghe and L. Rabet: Scr. Mater., 2011, vol. 64, pp. 840-843.

    CAS  Google Scholar 

  20. [20] S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong and J. Wang: Acta Mater., 2019, vol. 165, 547-560.

    CAS  Google Scholar 

  21. [21] S. Liu, H. Ding, H. Zhang, R. Chen, J. Guo and H. Fu: Nanoscale, 2018, vol. 10, pp. 11365-11374.

    CAS  Google Scholar 

  22. [22] R. Kalsar and S. Suwas: Scr. Mater., 2018, vol. 154, pp. 207-211.

    CAS  Google Scholar 

  23. [23] S. Xu, M. Gong, Y. Jiang, C. Schuman, J.S. Lemote and J. Wang: Acta Mater., 2018, vol. 152, pp. 58-76.

    CAS  Google Scholar 

  24. [24] I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe and C.N. Tome: Philos. Mag. A, 2010, vol. 90, pp. 2161-2190.

    CAS  Google Scholar 

  25. [25] C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia and M.T. Pérez-Prado: Acta Mater. 2015, vol. 88, pp. 232-244.

    Google Scholar 

  26. [26] A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59, pp. 7824-7839.

    CAS  Google Scholar 

  27. C.M. Cepeda-Jimenez, J.M. Molina-Aldareguia and M.T. Perez-Prado: Acta Mater., 2015, 88, 232-244.

    CAS  Google Scholar 

  28. [28] T. Hama, T. Suzuki, S. Hatakeyama, H. Fujimoto and H. Takuda: Mater. Sci. Eng. A, 2018, vol. 725, pp. 8-18.

    CAS  Google Scholar 

  29. H. E. Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherka, S.C. Vogel: Acta Mater., 2013, 61, 3549-3563.

    Google Scholar 

  30. A.J. WagonerJohnson, C.W. Bull, K.S. Kumar and C.L. Briant: Metall. Mater. Trans. A, 2003, vol. 34, pp. 295-306.

    Google Scholar 

  31. [31] X. Zheng, S. Zheng, J. Wang, Y. Ma, H. Wang, Y. Zhou, X. Shao, B. Zhang, J. Lei, R. Yang and X. Ma: Acta Mater., 2019, vol. 181, pp. 479-490.

    CAS  Google Scholar 

  32. [32] T. Braisaz, P. Ruterana and G. Nouet: Philos. Mag. A, 1997, vol. 76, pp. 63-84.

    CAS  Google Scholar 

  33. [33] Johnson A J W, Kumar K S and Briant C L: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1869-1877.

    CAS  Google Scholar 

  34. W. Gerhard, R.R. Boyer and E.W. Collings: Material Properties Handbook Titanium Alloys. ASM International, Cleveland; 1994

    Google Scholar 

  35. [35] Y. Guo, T.B. Britton and A.J. Wilkinson: Acta Mater., 2014, vol. 76, pp. 1-12.

    CAS  Google Scholar 

  36. H. Li, D. E. Mason, T. R. Bieler, C.J. Boehlert and M.A. Crimp: Acta Mater., 2013, 61:7555-7567.

    CAS  Google Scholar 

  37. [37] I.P. Jones and W.B. Hutchinson: Acta Metall. 1981; 29: 951-968.

    CAS  Google Scholar 

  38. [38] D. Hill, R. Banerjee, D. Huber, J. Tiley and H.L. Fraser: Scr. Mater., 2005, vol. 52, pp. 387-392.

    CAS  Google Scholar 

  39. [39] D.X. Li, D.H. Ping, Y.X. Lu and H.Q. Ye: Mater. Lett., 1993, vol. 16, pp. 322-326.

    CAS  Google Scholar 

  40. [40] E. Zhang, S. Zeng. and Z. Zhu: J. Mater. Sci., 2000, vol. 35, pp. 5989-5994.

    CAS  Google Scholar 

  41. [41] T. T. Sasaki, B. Fu and K. Torres: Philosophical Magazine, 2011, vol. 6, pp. 850-864.

    Google Scholar 

  42. [42] S. Roy and S. Suwas: Acta Mater., 2017, vol. 134, pp. 283-301.

    CAS  Google Scholar 

  43. [43] H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert and M.A. Crimp: Acta Mater., 2013, vol. 61, pp.7555-7567.

    CAS  Google Scholar 

  44. G. Lutjering and J. Williams: Introduction Titanium. Springer, Berlin 2007.

    Google Scholar 

  45. [45] Y. Mine, S. Katashima, R. Ding, P. Bowen and K. Takashima: Scr. Mater., 2019, vol. 165, pp. 107-111.

    CAS  Google Scholar 

  46. [46] M.A. Meyers, O. Vöhringer and V.A. Lubarda: Acta Mater. 2001, vol. 49, pp. 4025-4039.

    CAS  Google Scholar 

  47. [47] L. Capolungo, P.E. Marshall, R.J. Mccabe, I.J. Beyerlein and C.N. Tome: Acta Mater., 2009, vol. 57, pp. 6047-6056.

    CAS  Google Scholar 

  48. [48] V.C. Nardone and K.M. Prewo: Scr. Metall., 1986, vol. 20, pp. 43-48.

    CAS  Google Scholar 

  49. [49] N. Ramakrishnan: Acta Mater., 1996, vol. 44, pp. 69-77.

    CAS  Google Scholar 

  50. [50] P. Paupler and G. E. Dieter: Mechanical Metallurgy, third ed., Mc Graw-Hill Book Co., New York, 1986.

    Google Scholar 

  51. [51] M.A. Meyers and K.K. Chawla: Mechanical Behaviour of Materials, Prentice-Hall, Saddle River, 1999.

    Google Scholar 

  52. [52] M. Taya and R.J. Arsenault: Metal matrix composites—thermomechanical behavior, Pergamon Press, New York, 1989.

    Google Scholar 

  53. [53] L.M. Brown and W.M. Stobbs: Philos. Mag. 1976, vol. 34, pp. 351-372.

    CAS  Google Scholar 

  54. [54] N. Bosh, C. Müllera and H. Mozaffari-Jovein: Mater. Charact., 2019, vol. 155, pp. 109810.

    CAS  Google Scholar 

  55. [55] T.L. Anderson: Fracture mechanics: fundamentals and applications, CRC Press, Taylor & Francis, Boca Raton, 1991.

    Google Scholar 

  56. [56] Zhang R Y, Daymond M R and Holt R A: Mater. Sci. Eng. A, 2008, vol. 473, pp. 139-146.

    Google Scholar 

  57. [57] Zhang R Y, Daymond M R and Holt R A, Mater. Sci. Eng. A, 2011, vol. 528, pp. 2725-2735.

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos: 51871150, U1602274, 51875349, 51821001); National Key Research and Development Program of China (Grant No. 2018YFB1106403); Shanghai Science and Technology Committee Innovation Grant (Grant Nos: 17JC1402600, 17DZ1120000); Major Special Science and Technology Project of Yunnan Province (Grant No. 2018ZE002); the Equipment Pre-Research Foundation (Grant Nos. 41422010509, 61409230409); the 111 Project (Grant No. B16032); the Laboratory Innovative Research Program of Shanghai Jiao Tong University (Grant No. 17SJ-14) and the financial support from China Scholarship Council (CSC) (Grant No 201806235029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanfei Han or Weijie Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 22, 2020 and accepted September 27, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Han, Y., Su, X. et al. The Formation of \( \left\{ {10\bar{1}2} \right\} \) Deformation Twin in Hybrid TiB-TiC Reinforced Titanium Matrix Composites. Metall Mater Trans A 52, 350–363 (2021). https://doi.org/10.1007/s11661-020-06067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06067-7

Navigation