Skip to main content

Advertisement

Log in

Single Crystal Growth and Chemical Disorder Trapping of Refractory MoNbReTaW High-Entropy Alloy Solidified Under Electrostatic Levitation State

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The disorder trapping induced by supercooling is innovated to promote the formation of chemically disordered solid solution phase in high-entropy alloy (HEA) when the ordered phase is more inclined to form. We design a new MoNbReTaW HEA, consisting of the top five refractory metals with the highest melting points, whose liquidus temperature attains 2788 K. It is featured with a very large negative enthalpy of mixing and a strong mismatch of atomic size. As a result of sluggish atomic diffusion under a sufficient supercooling up to 500 K and consequent disorder trapping at a crystal growth velocity of 15 to 25 m/s, the original single solid solution phase with a conspicuous local chemical ordering transforms into a chemically disordered state. Owing to the decrease of atomic size mismatch, not only the lattice is turned out to be well-aligned but also the dislocation density is reduced. By the supercooling-based rapid solidification approach under electrostatic levitation condition, we successfully achieved the growth of spherical single crystals with 2 to 3.5 mm in diameter and interior misorientation less than 2 angle degrees. The notable suppression of microsegregation helps to enhance the microhardness to 6.8 GPa at the maximum supercooling of 538 K. Disorder trapping contributes to the increase of nanohardness up to 11.2 GPa. The liquid supercooling is capable of strengthening the mechanical property by optimizing the local chemical ordering.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Matsumoto, T. Yagasaki, and H. Tanaka: Phys. Rev. Lett., 2015, vol. 115, pp. 197801-1–5.

    Article  Google Scholar 

  2. P. G. Debenedetti and F. H. Stillinger: Nature, 2001, vol. 410, pp. 259-67.

    Article  CAS  Google Scholar 

  3. X. Q. Zheng, Y. Yang, Y. F. Gao, J. J. Hoyt, M. Asta, and D. Y. Sun: Phys. Rev. E, 2012, vol. 85, pp. 041601-1–7.

    Article  Google Scholar 

  4. C. Tang and P. Harrowell: Nature Mater., 2013, vol. 12, pp. 507-11.

    Article  CAS  Google Scholar 

  5. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    Article  CAS  Google Scholar 

  6. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent: Mater. Sci. Eng. A., 2004, vol. 375-377, pp. 213–18.

    Article  Google Scholar 

  7. S. Guo and C. T. Liu: Prog. Nat. Sci.-Mater., 2011, vol. 21, pp. 433-46.

    Article  Google Scholar 

  8. X. Yang and Y. Zhang: Mater. Chem. Phys., 2012, vol. 132, pp. 233-38.

    Article  CAS  Google Scholar 

  9. L. J. Santodonato, Y. Zhang, M. Feygenson, C. M. Parish, M. C. Gao, R. J. K. Weber, J. C. Neuefeind, Z. Tang, and P. K. Liaw: Nat. Commun., 2015, vol. 6(5964), pp. 1-13.

    Google Scholar 

  10. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle: Intermetallics, 2011, vol. 19, pp. 698-706.

    Article  CAS  Google Scholar 

  11. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw: Intermetallics, 2010, vol. 18, pp. 1758-65.

    Article  CAS  Google Scholar 

  12. B. Feng and M. Widom: Mater. Chem. Phys., 2018, vol. 210, pp. 309-14.

    Article  CAS  Google Scholar 

  13. W. K. Rhim, S. K. Chung, D. Barber, K. F. Man, G. Gutt, A. Rulison, and R. E. Spjut: Rev. Sci. Instrum., 1993, vol. 64, pp. 2961-70.

    Article  CAS  Google Scholar 

  14. L. Hu, W. L. Wang, S. J. Yang, L. H. Li, D. L. Geng, L. Wang, and B. Wei: J. Appl. Phys., 2017, vol. 121, pp. 085901-1–8.

    Google Scholar 

  15. Y. S. Sung, H. Takeya, and K. Togano: Rev. Sci. Instrum., 2001, vol. 72, pp. 4419-23.

    Article  CAS  Google Scholar 

  16. Y. S. Sung, H. Takeya, K. Hirata, and K. Togano: Appl. Phys. Lett., 2003, vol. 82, pp. 3638-40.

    Article  CAS  Google Scholar 

  17. L. Wang, L. Hu, D. L. Geng, and B. Wei: Mater. Lett., 2019, vol. 254, pp. 290-93.

    Article  CAS  Google Scholar 

  18. Y. Ruan, X. J. Wang, and S. Y. Chang: Acta Mater., 2015, vol. 91, pp. 183-91.

    Article  CAS  Google Scholar 

  19. J. S. Li, W. J. Jia, J. Wang, H. C. Kou, D. Zhang, and E. Beaugnon: Mater. Design, 2016, vol. 95, pp. 183-87.

    Article  CAS  Google Scholar 

  20. W. L. Wang, L. Hu, S. J. Yang, A. Wang, L. Wang, and B. Wei: Sci. Rep., 2016, vol. 6(37191), pp. 1-7.

    Google Scholar 

  21. W. Kurz and D. J. Fisher: Fundamentals of solidification 4th Edition. CRC Press, Boca Raton, 1998.

    Book  Google Scholar 

  22. Y. Arai, T. Aoyama, and S. Yoda: Rev. Sci. Instrum., 2004, vol. 75, pp. 2262-65.

    Article  CAS  Google Scholar 

  23. S. G. Ma, S. F. Zhang, M.C. Gao, P. K. Liaw, and Y. Zhang: JOM, 2013, vol. 65, pp. 1751-58.

    Article  CAS  Google Scholar 

  24. M. Feuerbacher, E. Würtz, A. Kovács, and C. Thomas: Mater. Res. Lett., 2017, vol. 5, pp. 128-34.

    Article  CAS  Google Scholar 

  25. M. Feuerbacher, T. Lienig, and C. Thomas: Scripta Mater., 2018, vol. 152, pp. 40-43.

    Article  CAS  Google Scholar 

  26. M. Feuerbacher, M. Heidelmann, and C. Thomas: Philos. Mag., 2015, vol. 95, pp. 1221-32.

    Article  CAS  Google Scholar 

  27. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817-29.

    Article  CAS  Google Scholar 

  28. C. M. F. RAE and R. C. Reed: Acta Mater., 2001, vol. 49, pp. 4113-25.

    Article  CAS  Google Scholar 

  29. Y. X. Ye, Z. P. Lü, and T. G. Nieh: Scripta Mater., 2017, vol. 130, pp. 64-68.

    Article  CAS  Google Scholar 

  30. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Acta Mater., 2014, vol. 65, pp. 85-97.

    Article  CAS  Google Scholar 

  31. L. Hu, S. J. Yang, L. Wang, W. Zhai, and B. Wei: Appl. Phys. Lett., 2017, vol. 110, pp. 164101-1–4.

    Google Scholar 

  32. A. M. Mullis and R. F. Cochrane: J. Appl. Phys., 1997, vol. 82, pp. 3783-90.

    Article  CAS  Google Scholar 

  33. G. Wilde, G. P. Görler, and R. Willnecker: Appl. Phys. Lett., 1996, vol. 69, pp. 2995-97.

    Article  CAS  Google Scholar 

  34. H. W. Yao, J. W. Qiao, M. C. Gao, J. A. Hawk, S. G. Ma, and H. F. Zhou: Entropy, 2016, vol. 18(189), pp. 1-15.

    CAS  Google Scholar 

  35. H. W. Yao, J. W. Qiao, M. C. Gao, J. A. Hawk, S. G. Ma, H. F. Zhou, and Y. Zhang: Mater. Sci. Eng. A, 2016, vol. 674, pp. 203-11.

    Article  CAS  Google Scholar 

  36. M. C. Gao, B. Zhang, S. Yang, and S. M. Guo: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3333-45.

    Article  Google Scholar 

  37. N. L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E. P. George: AIP Adv., 2016, vol. 6, pp. 125008-1–8.

    Article  Google Scholar 

  38. P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek: Phys. Rev. Lett., 2014, vol. 113, pp. 107001-1–5.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Z. W. Chen, Prof. J. C. Qiao, Dr. C. H. Wang, Dr. Q. G. Li, and Mr. Z. X. Wan for their valuable discussion and help with experiments. We also appreciate Dr. G. H. Wang and Prof. D. Qian for their help during Back-reflection Laue diffraction measurements. This work was financially supported by the National Natural Science Foundation of China (Nos. 51874244, 51327901 and 51401169) and NPU Excellent Personnel Supporting Project of Ao Xiang New Star.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 16, 2020; accepted September 28, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 15132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Wang, L., Lin, M.J. et al. Single Crystal Growth and Chemical Disorder Trapping of Refractory MoNbReTaW High-Entropy Alloy Solidified Under Electrostatic Levitation State. Metall Mater Trans A 52, 167–180 (2021). https://doi.org/10.1007/s11661-020-06050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06050-2

Navigation