Skip to main content
Log in

The Effect of Primary Carbide on the Wear Resistance of Fe-Cr-C Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The wear-resistant Fe-Cr-C coating has been widely used in industrial production owing to its high hardness and good comprehensive performance. Its anti-wear ability is mainly owing to the primary chromium carbides solidified during welding. In this study the effect of carbide morphology and distribution on the wear resistance of Fe-Cr-C coatings was investigated through experiment and simulation. In experiments, 3D microstructures of the typical carbides were examined using a high-resolution 3D X-ray computed tomography, and the 3D structures were then used in finite element simulation. Coatings with different morphologies and distributions of primary carbides were investigated. The results show that the fascicular primary chromium carbides break by the shearing stress during wear, leading to transverse fractures, while the mutual support among the homogeneous carbides contributes to the resistance of contact stress of the entire supporting framework, thereby imparting excellent wear resistance. Furthermore, the simulation results from the real 3D microstructure are consistent with the experimental ones. The fascicular structure produces a localized higher strain and larger stress concentration than the homogeneous one, implying higher abrasion loss in the former. These results will be helpful to optimize the structure design and final performance of the anti-wear Fe-Cr-C coatings. It will also be a new application of real-structure FE analysis in the widely used coatings for mining machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1] V. Heino, M. Kallio, K. Valtonen, and V.T. Kuokkala: Wear, 2017, vol. 388, pp. 119-125.

    Article  Google Scholar 

  2. [2] Q. Liu, H. Zhang, Q. Wang, X. Zhou, P.G. Jönsson, and K. Nakajima: ISIJ. Int., 2012, vol. 52, pp.2210-2219.

    Article  CAS  Google Scholar 

  3. [3] J.J. Coronado: Wear, 2011, vol. 270 pp. 287-293.

    Article  CAS  Google Scholar 

  4. [4] A.D. Iams, J.S. Keist, and T.A. Palmer: Metall. Mater. Trans. A., 2020, vol. 51, pp. 982-999.

    Article  Google Scholar 

  5. [5] S. Liu, Y. Zhou, X. Xing, J. Wang, X. Ren, and Q. Yang: Sci. Rep., 2016, vol. 6, pp. 32941.

    Article  CAS  Google Scholar 

  6. [6] S. Liu, Y. Zhou, X. Xing, J. Wang, Y. Yang, and Q. Yang: Mater. Lett., 2016, Vol. 183, pp. 272-276.

    Article  CAS  Google Scholar 

  7. [7] J.J. Coronado: Wear, 2011, vol. 270, pp. 823-827.

    Article  CAS  Google Scholar 

  8. [8] H.H. Lai, C.C. Hsieh, C.M. Lin, and W. Wu: Met. Mater. Int., 2016, vol. 22, pp. 101-107.

    Article  CAS  Google Scholar 

  9. [9] C. Scandian, C. Boher, J.D.B. de Mello, and F. Rezai-Aria: Wear, 2009, vol. 267, pp. 401-8.

    Article  CAS  Google Scholar 

  10. [10] F. Sadeghi, H. Najafi, and A. Abbasi: Surf. Coat. Tech., 2017, vol. 324, pp. 85-91.

    Article  CAS  Google Scholar 

  11. [11] X. Yun, Y.F. Zhou, B. Zhao, X.L. Xing, J. Yang, Y.L. Yang, and Q.X. Yang: Tribol. Lett., 2015, vol. 58, pp. 23.

    Article  Google Scholar 

  12. [12] J. Gou, Y. Wang, C. Wang, R. Chu, and S. Liu: J. Alloy. Compd., 2017, vol. 691, pp. 800-810.

    Article  CAS  Google Scholar 

  13. [13] J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin, and M. Kirchgaßner: Mater. Sci. Eng. A., 2013, vol. 576, pp. 243-251.

    Article  CAS  Google Scholar 

  14. [14] V.G. Efremenko, Y.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, and B.V. Efremenko: Mater. Design, 2017, vol. 126, pp. 278-290.

    Article  CAS  Google Scholar 

  15. [15] C.M. Chang, L.H. Chen, C.M. Lin, J.H. Chen, C.M. Fan, and W. Wu: Surf. Coat. Tech., 2010, vol. 205, pp. 245-250.

    Article  CAS  Google Scholar 

  16. [16] F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Acta. Mater., 2010, vol. 58, pp. 1152-1211.

    Article  CAS  Google Scholar 

  17. [17] D.D. Tjahjanto, A.S.J. Suiker, S. Turtteltaub, P.R.D. Del Castillo, and S. Van der Zwaag: Comp. Mater. Sci., 2007, vol. 41, pp. 107-116.

    Article  CAS  Google Scholar 

  18. [18] D.D. Tjahjanto, S. Turteltaub, A.S.J. Suiker, and S. Van der Zwaag: Model. Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 617-636.

    Article  CAS  Google Scholar 

  19. [19] K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel: Acta. Mater., 2009, vol. 57, pp. 2592-2604.

    Article  CAS  Google Scholar 

  20. [20] M. Jafari, S. Ziaei-Rad, N. Saeidi, and M. Jamshidian: Mater. Sci. Eng. A., 2016, vol. 670, pp. 57-67.

    Article  CAS  Google Scholar 

  21. [21] J. Lengiewicz, and S. Stupkiewicz: Comput. Method. Appl. Mech. Eng., 2012, vol. 205, pp. 178-188.

    Article  Google Scholar 

  22. [22] T. Yue, and M. A. Wahab: Wear, 2014, vol. 321, pp. 53-63.

    Article  CAS  Google Scholar 

  23. [23] N. Barnes, S. Borle, M. Dewar, J. Andrejuk, and P.F. Mendez: Sci. Technol. Weld. Joi., 2014, vol. 19, pp. 696-702.

    Article  CAS  Google Scholar 

  24. [24] M. Dao, N.V. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Acta. Mater., 2001, vol. 49, pp. 3899-3918.

    Article  CAS  Google Scholar 

  25. [25] N. Chollacoop, M. Dao, and S. Suresh: Acta. Mater., 2003, vol. 51, pp. 3713-3729.

    Article  CAS  Google Scholar 

  26. [26] J. Liu, S. Yang, K. Liu, C. Gui, and W. Xia: Metall. Mater. Trans. A., 2017. Vol. 48, pp. 3017-3026.

    Article  Google Scholar 

  27. [27] Y.F. Ivanov, A.A. Klopotov, E.A. Petrikova, Y.A. Abzaev, and O.V. Ivanova: Steel in Translation, 2017, vol. 47, pp. 669-674.

    Article  Google Scholar 

  28. [28] K. Hirota, K. Mitani, M. Yoshinaka, and O. Yamaguchi: Mater. Sci. Eng. A., 2005, vol. 399, pp. 154-160.

    Article  Google Scholar 

  29. [29] G. Sun, Y. Zhang, C. Liu, K. Luo, X. Tao, and P. Li: Mater. Design., 2010, vol. 31, pp. 2737-2744.

    Article  CAS  Google Scholar 

  30. [30] M. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski: Met. Mater. Int., 2013, vol. 19, pp. 473-481.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017XKZD08). E. I. Galindo-Nava acknowledges the Royal Academy of Engineering for his research fellowship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Wang, J., Galindo-Nava, E.I. et al. The Effect of Primary Carbide on the Wear Resistance of Fe-Cr-C Coatings. Metall Mater Trans A 51, 6355–6363 (2020). https://doi.org/10.1007/s11661-020-05998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05998-5

Navigation