Skip to main content
Log in

Microstructural Stability of As-Cast and Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloys at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, we investigate the microstructural stability of as-cast and directionally solidified (DS) AlCoCrFeNi2.1 eutectic high-entropy alloys at elevated temperatures (900 °C to 1100 °C). The microstructure of the as-cast alloy is composed of a lamellar and mesh-like structure consisting of NiAl-rich (B2) and CoCrFeNi-rich (L12) phases. Annealing at 900 °C to 1100 °C results in the coarsening of the lamellar or mesh-like structures and the migration of termination. For the as-DS alloy, the solid–liquid interface undergoes a transition from planar to cellular morphology along with the decrease of interlamellar spacing with increasing the withdrawal rates. After the same heat treatment, the stability of DS microstructure is relatively excellent at 6 μm/s where only a little coarsening and migration of the lamellar structure occur. With increasing withdrawal rates, the microstructural degradation, like the coarsening of lamellar or mesh-like structures and the migration of termination, becomes severe because of the decrease of interlamellar spacing. Moreover, an interesting phenomenon is that the coarsening of the lamellar structure occurs along with the thinning of the adjacent lamellae at 1100 °C for the as-cast alloy or the DS alloy at 120 μm/s due to the fine interlamellar spacing. The relevant coarsening and migration mechanisms are discussed. In addition, the precipitate forms at 900 °C in all the experimental alloys and is identified as Ni-rich phase (FCC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    CAS  Google Scholar 

  2. [2] Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, and T.G. Nieh: Intermetallics, 2015, vol. 66, pp. 67-76.

    CAS  Google Scholar 

  3. [3] D.B. Miracle, and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448-511.

    CAS  Google Scholar 

  4. [4] F. Zhang, Y. Wu, H.B. Lou, Z.D. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J.Y. Yan, J.S. Okasinski, X.J. Liu, Y. Liu, Q.S. Zeng, and Z.P. Lu: Nat. Commun., 2017, vol. 8, pp. 15687.

    CAS  Google Scholar 

  5. [5] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.

    Google Scholar 

  6. [6] X.W. Liu, L. Liu, G. Liu, X.X. Wu, D.H. Lu, J.Q. Yao, W.M. Jiang, Z.T. Fan, and W.B. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2151-2160.

    Google Scholar 

  7. [7] D.X. Wei, X.Q. Li, W.C. Heng, Y. Koizumi, F. He, W. Choi, B. Lee, H.S. Kim, H. Kato, and A. Chiba : Mater. Res. Lett., 2019, vol. 7, pp. 82-88.

    CAS  Google Scholar 

  8. [8] X.W. Liu, G. Laplanche, A. Kostka, S.G. Fries, J. Pfetzing-Micklich, G. Liu, and E.P. George: J. Alloys Compd., 2019, vol.775, pp. 1068-1076.

    CAS  Google Scholar 

  9. [9] Y.P. Lu, Y. Dong, S.Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan and T.J. Li: Sci. Rep., 2014, vol. 6, pp. 6200.

    Google Scholar 

  10. [10] Y.P. Lu, X.Z. Gao, L Jiang, Z.N. Chen, T.M. Wang, J.C.Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan,Y.H. Zhao, Z.Q. Cao, and T.J. Li: Acta Mater., 2017, vol. 124, pp. 143-150.

    CAS  Google Scholar 

  11. [11] X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao: Acta Mater., 2017, vol. 141, pp. 59-66.

    CAS  Google Scholar 

  12. [12] F. He, Z.J. Wang, S.Z. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu,and Y.Y. Dang: J. Alloys Compd., 2016, vol. 667, pp. 53-57.

    CAS  Google Scholar 

  13. [13] F. He, Z.J. Wang, Q.F. Wu, D. Chen, T. Yang, J.J. Li, J.C. Wang, C.T. Liu, and J.J. Kai: Scripta Mater., 2018, vol. 155, pp.134-138.

    CAS  Google Scholar 

  14. [14] K.X. Zhou, J.J. Li, L.L. Wang, H.O. Yang, Z.J. Wang, and J.C. Wang: Intermetallics, 2019, vol. 114, pp. 106592.

    CAS  Google Scholar 

  15. [15] W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang: J. Alloys Compd., 2018, vol. 735, pp. 897-904.

    CAS  Google Scholar 

  16. [16] C. Ai, F. He, M. Guo, J. Zhou, Z.J. Wang, Z.W. Yuan, Y.J. Guo, Y.L. Liu, and L. Liu: J. Alloys Compd., 2018, vol. 735, pp. 2653-2662.

    CAS  Google Scholar 

  17. [17] W.Y. Huo, H. Zhou, F. Fang, Z.H. Xie, and J.Q. Jiang: Mater. Des., 2017, vol.134, pp.226-233.

    CAS  Google Scholar 

  18. [18] Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, and T.J. Li: Intermetallics, 2017, vol. 91, pp.124-128.

    CAS  Google Scholar 

  19. [19] L. Jiang, Y.P. Lu, W. Wu, Z.Q. Cao, and T.J. Li: J. Mater. Sci. Technol., 2016, vol. 32, pp.245-250.

    CAS  Google Scholar 

  20. [20] L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li: J. Alloys Compd., 2015,vol. 649, pp.585-590.

    CAS  Google Scholar 

  21. [21] H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, and T.J. Li: Mater. Des., 2016,vol. 109, pp.539-546.

    CAS  Google Scholar 

  22. [22] I. Baker, M. Wu, and Z.W. Wang: Mater. Charact., 2019, vol. 147, pp. 545-557.

    CAS  Google Scholar 

  23. [23] I. Baker, and F.L. Meng: Acta Mater., 2015, vol. 95, pp.124-131.

    CAS  Google Scholar 

  24. [24] Y.F. Liao, and I. Baker: Mater. Charact., 2008, vol. 59, pp.1546-1549.

    CAS  Google Scholar 

  25. [25] Y.M. Tan, J.S. Li, J. Wang, and H.C. Kou: Intermetallics, 2017, vol. 85, pp.74-79.

    CAS  Google Scholar 

  26. [26] X. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, F.X. Wei, Q.K. Meng, and Z. Sun: Mater. Sci. Eng. A, 2017, vol. 681, pp.25-31.

    CAS  Google Scholar 

  27. [27] X. Jin, Y. Zhou, L. Zhang, X.Y. Du, and B.S. Li: Mater. Lett., 2018, vol. 216, pp.144-146.

    CAS  Google Scholar 

  28. [28] L. Wang, C.L. Yao, J. Shen, Y.P. Zhang, T. Wang, Y.H. Ge, L.H. Gao, and G.J. Zhang: Intermetallics, 2020, vol. 118, pp. 106681.

    CAS  Google Scholar 

  29. [29] H.T. Zheng, R.R. Chen, G. Qin, X.Z. Li, Y.Q. Su, H.S. Ding, J.J. Guo, and H.Z. Fu: Intermetallics, 2019, vol. 113, pp.106569.

    CAS  Google Scholar 

  30. [30] Y.L. Zhang, X.G. Wang, J.G. Li, Y.Q. Huang, Y.P. Lu, and X.F. Sun: Mater. Sci. Eng. A, 2018, vol. 724, pp. 148-155.

    CAS  Google Scholar 

  31. [31] Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, and X.F. Sun: J. Mater. Sci. Technol., 2019, vol. 35, pp. 902-906.

    Google Scholar 

  32. [32] I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji: Intermetallics, 2017, vol. 84, pp.42-51.

    CAS  Google Scholar 

  33. [33] I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, and N. Tsuji: Mater. Sci. Eng. A, 2016, vol. 675, pp. 99-109.

    CAS  Google Scholar 

  34. [34] P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw: Nat. Commun., 2019, vol. 10, pp. 489.

    CAS  Google Scholar 

  35. [35] T. Bhattacharjee, R. Zheng, Y. Chong, S. Sheikh, S. Guo, I.T. Clark, T. Okawa, I.S. Wani, P.P. Bhattacharjee, A. Shibata, and N. Tsuji: Mater. Chem. Phys., 2018, vol. 210, pp. 207-212.

    CAS  Google Scholar 

  36. [36] M.R. Rahul, S. Samal, S. Venugopal, and G. Phanikumar: J. Alloys Compd., 2018, vol. 749, pp. 1115-1127.

    CAS  Google Scholar 

  37. [37] L. Wang, and J. Shen: J. Alloys Compd., 2016, vol. 663, pp.187-195.

    CAS  Google Scholar 

  38. [38] L. Wang, J. Shen, Z. Shang, J.F. Zhang, Y.J. Du, and H.Z. Fu: Mater. Sci. Eng. A, 2014, vol. 607, pp.113-121.

    CAS  Google Scholar 

  39. [39] L. Wang, J. Shen, Y.P. Zhang, L.L. Guo, H.X. Xu, and H.Z. Fu: Intermetallics, 2017, vol. 84, pp.11-19.

    CAS  Google Scholar 

  40. [40] S. Milenkovic, and R. Caram: J. Mater. Process Tech., 2003, vol. 143-144, pp. 629-635.

    Google Scholar 

  41. [41] L. Wang, J. Shen, Z. Shang, and H.Z. Fu: Scr. Mater., 2014, vol. 89, pp. 1-4.

    CAS  Google Scholar 

  42. [42] L. Wang, C.L. Yao, J. Shen, Y.P. Zhang, T. Wang, H.X. Xu, L.H. Gao, and G.J. Zhang: Mater. Sci. Eng. A, 2019, vol. 744, pp. 593-603.

    CAS  Google Scholar 

  43. [43] A. Gali, H. Bei, and E.P. George: Acta Mater., 2009, vol. 57, pp. 3823-3829.

    CAS  Google Scholar 

  44. [44] L.D. Graham, and R.W. Kraft: Trans. Metall. Soc. AIME, 1996, vol. 236, pp. 94–102.

    Google Scholar 

  45. [45] G. Sharma, R.V. Ramanujan, and G.P. Tiwari: Acta Mater., 2000, vol. 48, pp. 875–889.

    CAS  Google Scholar 

  46. [46] G.X. Hu, X. Cai, and Y.H. Rong: Fundamentals of Materials Science, second ed., Shanghai jiao tong university press, Shanghai, 2006, pp. 147.

    Google Scholar 

  47. [47] F. He, Z.J. Wang, X.L. Shang, C. Leng, J.J. Li, and J.C. Wang: Mater. Des., 2016, vol. 104, pp. 259-264.

    CAS  Google Scholar 

  48. [48] H. Jiang, D. Qiao, Y. Lu, Z. Ren, Z. Cao, T. Wang, and T. Li: Scr. Mater., 2019, vol. 165, pp. 145-149.

    CAS  Google Scholar 

  49. [49] L. Wang, J. Shen, G.J. Zhang, Y.P. Zhang, L.L. Guo, Y.H. Ge, L.H. Gao, and H.Z. Fu: Intermetallics, 2018, vol. 94, pp. 83-91.

    CAS  Google Scholar 

  50. [50] L. Wang, G.J. Zhang, J. Shen, Y.P. Zhang, H.X. Xu, Y.H. Ge, and H.Z. Fu: J. Alloys Compd., 2018, vol. 732, pp.124-128.

    CAS  Google Scholar 

  51. [51] L.Y. Lin, and T.H. Courtney: Metall. Trans., 1974, vol. 5, pp. 513–514.

    CAS  Google Scholar 

  52. [52] J.C.M. Kampe, T.H. Courtney, and Y. Leng: Acta Metall., 1989, vol. 37, pp. 1735–1745.

    CAS  Google Scholar 

  53. [53] L. Ratke, and P.W. Voorhees: Growth and Coarsening - Ostwald Ripening in Material Processing, Springer-Verlag Berlin Heidelberg, Berlin, 2002, pp. 117.

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant Nos. 51501147, 51674196), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JM-438), the fund of the State Key Laboratory of Solidification Processing in NPU (Grant No. SKLSP202007) and China Postdoctoral Science Foundation (Grant No. 2018M641005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang, Jun Shen or Guojun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 21, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, X., Yao, C. et al. Microstructural Stability of As-Cast and Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloys at Elevated Temperatures. Metall Mater Trans A 51, 5781–5789 (2020). https://doi.org/10.1007/s11661-020-05993-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05993-w

Navigation