Skip to main content
Log in

Evolution of Transient Nature Nanoscale Softening During Martensite Tempering

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the progression of martensite tempering as a function of tempering parameter has been investigated using instrumented nanoindentation. Three distinct stages of tempering related to the carbon segregation, carbide nucleation, and Ostwald ripening were identified. During the second tempering stage, the nanohardness achieves a plateau which is attributed to the change of carbide morphology, dissolution of intra-lath carbides, and growth of inter-lath and block boundary carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. R. Nadlene, H. Esah, S. Norliana, and M.A. Mohdirwan: Int. Sch. Sci. Res. Innov., 2011, vol. 50, pp. 564–7.

    Google Scholar 

  2. S. Keeler, M. Kimchi, and P.J. Mooney: WorldAutoSteel.

  3. 3 H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka, and Y. Tanaka: J. Alloys Compd., 2013, vol. 577, pp. S661–7.

    Article  CAS  Google Scholar 

  4. 4 T. Ohmura, T. Hara, K. Tsuzaki, H. Nakatsu, and Y. Tamura: J. Mater. Res., 2004, vol. 19, pp. 79–84.

    Article  CAS  Google Scholar 

  5. M. Jung, S.J. Lee, and Y.K. Lee: Metall. Mater. Trans. A, 2009, vol. 40, pp. 551–9.

    Article  CAS  Google Scholar 

  6. 6 G.R. Speich: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 2553–64.

    CAS  Google Scholar 

  7. 7 E.I. Galindo-Nava and P.E.J. Rivera-Díaz-Del-Castillo: Acta Mater., 2015, vol. 98, pp. 81–93.

    Article  CAS  Google Scholar 

  8. 8 C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and Z. Yan: Mater. Des., 2012, vol. 36, pp. 220–6.

    Article  CAS  Google Scholar 

  9. 9 T. Swarr and G. Krauss: Metall. Trans. A, 1976, vol. 7, pp. 41–8.

    Article  Google Scholar 

  10. B. Kim, E. Boucard, T. Sourmail, D. Sanmartín, N. Gey, and P.E.J. Rivera-Díaz-Del-Castillo: Acta Mater., 2014, vol. 68, pp. 169–78.

    Article  CAS  Google Scholar 

  11. E. Kozeschnik, C. Bataille, and K. Janssens: Modeling Solid-State Precipitation. Momentum Press, New York, 2012.

    Book  Google Scholar 

  12. G.B. Olson and W.S. Owen: in Martensitic Nucleation, ASM International, Materials Park, OH, 1992, p. 261.

  13. 13 R.C. Thomson and M.K. Miller: Acta Mater., 1998, vol. 46, pp. 2203–13.

    Article  CAS  Google Scholar 

  14. 14 T. Ohmura, K. Tsuzaki, and S. Matsuoka: Scr. Mater., 2001, vol. 45, pp. 889–94.

    Article  CAS  Google Scholar 

  15. 15 T. Ohmura, T. Hara, and K. Tsuzaki: Scr. Mater., 2003, vol. 49, pp. 1157–62.

    Article  CAS  Google Scholar 

  16. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Philos. Mag. A, 2002, vol. 82, pp. 1903–10.

    CAS  Google Scholar 

  17. 17 D.C. Saha, E. Biro, A.P. Gerlich, and Y. Zhou: Mater. Sci. Eng. A, 2016, vol. 673, pp. 467–75.

    Article  CAS  Google Scholar 

  18. Gordon England: Calculator for Conversion between Vickers Hardness Number and SI Units MPa and GPa, https://www.gordonengland.co.uk/hardness/hvconv.htm.

  19. 19 T. Tsuchiyama: J. Japan Soc. Heat Treat., 2002, vol. 42, pp. 163–8.

    CAS  Google Scholar 

  20. 20 L. Morsdorf, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2015, vol. 95, pp. 366–77.

    Article  CAS  Google Scholar 

  21. B.B. He and M.X. Huang: Metall. Mater. Trans. A, 2014, vol. 46, pp. 688–94.

    Google Scholar 

  22. K.L. Johnson and L.M. Keer: Contact Mechanics, vol. 108, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  23. 23 A.M. Sherman, G.T. Eldis, and M. Cohen: Metall. Trans. A, 1983, vol. 14, pp. 995–1005.

    Article  CAS  Google Scholar 

  24. V.H. Baltazarhernandez, S.K. Panda, Y. Okita, and N.Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 1638–47.

    Article  CAS  Google Scholar 

  25. 25 M. Mukherjee and T.K. Pal: J. Mater. Sci. Technol., 2012, vol. 28, pp. 343–52.

    Article  CAS  Google Scholar 

  26. 26 A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Acta Mater., 2000, vol. 48, pp. 2277–95.

    Article  CAS  Google Scholar 

  27. D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, and M.K. Miller: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1698–711.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 11, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, D.C., Biro, E., Gerlich, A.P. et al. Evolution of Transient Nature Nanoscale Softening During Martensite Tempering. Metall Mater Trans A 51, 3772–3777 (2020). https://doi.org/10.1007/s11661-020-05866-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05866-2

Navigation