Skip to main content
Log in

A Descriptive Model on the Grain Size Dependence of Deformation and Martensitic Transformation in Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A descriptive model is presented on the austenite grain size dependence of deformation and martensitic transformation upon tensile loading of a metastable 301L grade austenitic stainless steel. Cold rolling and subsequent short-duration annealing of the as-received coarse-grained material at 973 K to 1023 K (700 °C to 750 °C) resulted in a mixed microstructure consisting of fine and ultra-fine grains (UFG) that showed a more pronounced γε-martensite and γ → twin formation (precursors of α′-martensitic transformation) and finally more α′-martensite in the tensile-tested specimen. Whereas their coarse-grained (CG) counterpart facilitates only the former reaction, which eventually leads to less severe martensitic transformation in CG than that in UFG. The evolution of texture under tensile deformation is simulated using visco-plastic self-consistent (VPSC) model and compared with the experimental data obtained from interrupted tensile tests. Besides a thermodynamic approach, microstructural characterization using optical and electron microscopy (scanning and transmission), electron backscattered diffraction, nanoindentation, and transmission Kikuchi diffraction studies were realized to establish a mechanistic explanation on the grain size dependence of austenite stability against deformation-induced martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035–59.

    CAS  Google Scholar 

  2. R.Z. Valiev: Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 59–66.

    Google Scholar 

  3. J.W. Morris, Jr., Z. Guo, C.R. Krenn, and Y.-H. Kim: ISIJ Int., 2001, vol. 41, pp. 599–611.

    CAS  Google Scholar 

  4. E. Ma: JOM, 2006, vol. 58, pp. 49–53.

    CAS  Google Scholar 

  5. .S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, and R.D.K. Misra: Mater. Charact., 2015, vol. 110, pp. 228–35.

    CAS  Google Scholar 

  6. C. Lei, X. Deng, X. Li, Z. Wang, G. Wang, and R.D.K. Misra: J. Alloys Compd., 2016, vol. 689, pp. 718–25.

    CAS  Google Scholar 

  7. K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M. Geijselaers, and J. Post: Acta Mater., 2009, vol. 57, pp. 3321–6.

    CAS  Google Scholar 

  8. P. Jacques, Q. Furnémont, A. Mertens, and F. Delannay: Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., 2001, vol. 81, pp. 1789–812.

    CAS  Google Scholar 

  9. G.B. Olson and M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107–18.

    CAS  Google Scholar 

  10. A.F. Padilha, R.L. Plaut, and P.R. Rios: ISIJ Int., 2003, vol. 43, pp. 135–43.

    CAS  Google Scholar 

  11. V.S.A. Challa, R.D.K. Misra, M.C. Somani, and Z.D. Wang: Mater. Sci. Eng. A, 2016, vol. 649, pp. 153–7.

    CAS  Google Scholar 

  12. G.E. Dieter: Mechanical Metallurgy, 3rd edn., Mc Graw-Hill Book Co., New York, 1961.

    Google Scholar 

  13. P.M. Ahmedabadi, V. Kain, and A. Agrawal: Mater. Des., 2016, vol. 109, pp. 466–75.

    CAS  Google Scholar 

  14. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.

    CAS  Google Scholar 

  15. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Google Scholar 

  16. Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, and D. Raabe: Acta Mater., 2015, vol. 97, pp. 305–15.

    CAS  Google Scholar 

  17. S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2007, vol. 55, pp. 6843–51.

    CAS  Google Scholar 

  18. G.B. Olson and M. Cohen: Metall. Trans. A, 1975, vol. 6, pp. 791–5.

    Google Scholar 

  19. H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, N.J. Kim, and S. Lee: Metall. Mater. Trans. A 2011, vol. 42, pp. 1827–35.

    Google Scholar 

  20. E. Jimenez-Melero, N.H. Van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. Van Der Zwaag: Scr. Mater., 2007, vol. 56, pp. 421–4.

    CAS  Google Scholar 

  21. Y. Matsuoka, T. Iwasaki, N. Nakada, and T. Tsuchiyama: ISIJ Int., 2013, vol. 53, pp. 1224–30.

    CAS  Google Scholar 

  22. M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao, and P.D. Hodgson: Mater. Sci. Eng. A, 2016, vol. 653, pp. 35–42.

    CAS  Google Scholar 

  23. Y.S. Jung, Y.K. Lee, D.K. Matlock, and M.C. Mataya: Met. Mater. Int., 2011, vol. 17, pp. 553–6.

    CAS  Google Scholar 

  24. M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.

    CAS  Google Scholar 

  25. M. Shirdel, H. Mirzadeh, and M.H. Parsa: Mater. Charact., 2015, vol. 103, pp. 150–61.

    CAS  Google Scholar 

  26. J.-J. Fundenberger and B. Beausir: 2015.

  27. J. Talonen, P. Nenonen, G. Pape, and H. Hänninen: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 421–32.

    CAS  Google Scholar 

  28. ASTM Standard E8/E8M-16a: in Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2016.

  29. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345–51.

    Google Scholar 

  30. M.F. de Campos, S.A. Loureiro, D. Rodrigues, M.C.A. da Silva, and N.B. de Lima: Mater. Sci. Forum, 2008, vol. 591, pp. 3–7.

    Google Scholar 

  31. H. Hu: Texture Cryst. Solids, 1980, vol. 4, pp. 111–27.

    CAS  Google Scholar 

  32. R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, and L.P. Karjalainen: Acta Mater., 2015, vol. 84, pp. 339–48.

    CAS  Google Scholar 

  33. F. Vanderschaeve, R. Taillard, and J. Foct: J. Mater. Sci., 1995, vol. 30, pp. 6035–46.

    CAS  Google Scholar 

  34. M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, and A. Kyröläinen: Metall. Mater. Trans. A, 2009, vol. 40, pp. 729–44.

    CAS  Google Scholar 

  35. C.X. Huang, G. Yang, C. Wang, Z.F. Zhang, and S.D. Wu: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2061–71.

    Google Scholar 

  36. N. Tsuchida, H. Masuda, Y. Harada, K. Fukaura, Y. Tomota, and K. Nagai: Mater. Sci. Eng. A, 2008, vol. 488, pp. 446–52.

    Google Scholar 

  37. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    CAS  Google Scholar 

  38. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817.

    CAS  Google Scholar 

  39. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198–208.

    CAS  Google Scholar 

  40. Ma, J.E. Jin, and Y.K. Lee: Scr. Mater., 2005, vol. 52, pp. 1311–5.

    CAS  Google Scholar 

  41. C. Garion: Cracow University of Technology, 2003.

  42. S. Tirekar, H.R. Jafarian, and A.R. Eivani: Mater. Sci. Eng. A, 2017, vol. 684, pp. 120–6.

    CAS  Google Scholar 

  43. K.G. Samuel, S.L. Mannan, and P. Rodriguez: Acta Met., 1988, vol. 36, pp. 2323–7.

    CAS  Google Scholar 

  44. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd edn., Prentice-Hall, New York, 2001.

    Google Scholar 

  45. Y. Kim, T.H. Ahn, D.W. Suh, and H.N. Han: Scr. Mater., 2015, vol. 104, pp. 13–6.

    CAS  Google Scholar 

  46. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, and S.X. Li: J. Mater. Res., 2007, vol. 22, pp. 724–9.

    CAS  Google Scholar 

  47. Y. Tian, A. Borgenstam, and P. Hedström: J. Alloys Compd., 2018, vol. 766, pp. 131–9.

    CAS  Google Scholar 

  48. R.D.K. Misra, S. Nayak, P.K.C. Venkatasurya, V. Ramuni, M.C. Somani, and L.P. Karjalainen: Met. Mater. Trans. A, 2010, vol. 41, pp. 2162–74.

    CAS  Google Scholar 

  49. C. Celada-casero, H. Kooiker, M. Groen, J. Post, and D. San-martin: Metals (Basel)., 2017, vol. 7, pp. 1–15.

    Google Scholar 

  50. S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan: Mater. Sci. Eng. A, 2015, vol. 636, pp. 221–30.

    CAS  Google Scholar 

  51. W.-S. Lee and C.-F. Lin: Scr. Mater., 2000, vol. 43, pp. 777–82.

    CAS  Google Scholar 

  52. R.D.K. Misra, J.S. Shah, S. Mali, P.K.C.V. Surya, M.C. Somani, and L.P. Karjalainen: Mater. Sci. Technol., 2013, vol. 29, pp. 1185–92.

    CAS  Google Scholar 

  53. A. Kisko, A.S. Hamada, J. Talonen, D. Porter, and L.P. Karjalainen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 359–70.

    CAS  Google Scholar 

  54. A. Järvenpää, M. Jaskari, J. Man, and L.P. Karjalainen: Mater. Charact., 2017, vol. 127, pp. 12–26.

    Google Scholar 

  55. B. RaviKumar, A.K. Singh, S. Das, and D.K. Bhattacharya: Mater. Sci. Eng. A, 2004, vol. 364, pp. 132–9.

    Google Scholar 

  56. M. Eskandari: Res. Dev. Mater. Sci., 2018, vol. 6, pp. 1–2.

    Google Scholar 

  57. Łuksza, M. Rumiński, W. Ratuszek, and M. Blicharski: J. Mater. Process. Technol., 2006, vol. 177, pp. 555–60.

    Google Scholar 

  58. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scr. Mater., 2002, vol. 47, pp. 893–9.

    CAS  Google Scholar 

  59. S. Kang, J.G. Jung, M. Kang, W. Woo, and Y.K. Lee: Mater. Sci. Eng. A, 2016, vol. 652, pp. 212–20.

    CAS  Google Scholar 

  60. L. Fu, Z. Li, H. Wang, W. Wang, and A. Shan: Scr. Mater., 2012, vol. 67, pp. 297–300.

    CAS  Google Scholar 

  61. S. Gao, Y. Bai, R. Zheng, Y. Tian, W. Mao, A. Shibata, and N. Tsuji: Scr. Mater., 2019, vol. 159, pp. 28–32.

    CAS  Google Scholar 

  62. J.D. Eshelby: Proc. R. Soc. Lond. A., 1957, vol. 241, pp. 376–96.

    Google Scholar 

  63. C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: Acta Met., 1984, vol. 32, pp. 1637–53.

    CAS  Google Scholar 

  64. B.A. Mohammed: Michigan State University, 2017.

  65. S.M. Hasan, A. Ghosh, D. Chakrabarti, and S.B. Singh: Met. Mater. Trans. A, 2020, pp. 1–19.

  66. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    CAS  Google Scholar 

  67. G.P. Kang, K. Lee, Y.H. Kim, S.J. Park, and K.S. Shin: Met. Mater. Int., 2017, vol. 23, pp. 930–9.

    CAS  Google Scholar 

  68. R.K. Ray, P. Chapellier, and J.J. Jonas: Textures Microstruct., 1990, vol. 12, pp. 141–53.

    Google Scholar 

  69. H.S. Yang, J.H. Jang, H.K.D.H. Bhadeshia, and D.W. Suh: Calphad Comput. Coupling Phase Diagrams Thermochem., 2012, vol. 36, pp. 16–22.

    CAS  Google Scholar 

  70. T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165–74.

    CAS  Google Scholar 

  71. E.Y. Kim, W.C. Woo, Y.U. Heo, B.S. Seong, J.Y. Choi, and S.H. Choi: Int. J. Plast., 2016, vol. 79, pp. 48–67.

    CAS  Google Scholar 

  72. L. Kaufman and M. Cohen: Prog. Met. Phys., 1958, vol. 7, pp. 165–246.

    CAS  Google Scholar 

  73. S. Curtze and V.T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.

    CAS  Google Scholar 

  74. A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 184–7.

    Google Scholar 

  75. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.

    Google Scholar 

  76. M.C. Park, K.N. Kim, J.Y. Yun, G.S. Shin, and S.J. Kim: Tribol. Lett., 2014, vol. 54, pp. 51–8.

    CAS  Google Scholar 

  77. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2017, vol. 128, pp. 120–34.

    CAS  Google Scholar 

  78. J.W. Brooks, M.H. Loretto, and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1839–47.

    CAS  Google Scholar 

  79. D.T. Pierce: PhD Thesis, 2014, p. 167.

  80. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    CAS  Google Scholar 

  81. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  82. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig: Acta Mater., 2014, vol. 68, pp. 238–53.

    CAS  Google Scholar 

  83. I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2001, vol. 49, pp. 3919–33.

    CAS  Google Scholar 

  84. Y. Tian: KTH Royal Institute of Technology, 2018.

  85. Z. Nishiyama: Martensitic Transformation, Elsevier, Amsterdam, 2012.

    Google Scholar 

  86. M. BigdeliKarimi, H. Arabi, A. Khosravani, and J. Samei: J. Mater. Process. Technol., 2008, vol. 203, pp. 349–54.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Sudipta Patra for arranging material for this work. Authors are also thankful to the Central Research Facility and Dept. of Metallurgical and Materials Engg., IIT Kharagpur (including Institute SGDRI-2015 grant), and Advanced Facility for Microscopy and Microanalysis, IISc Bangalore for the research amenities. Thoughtful discussion with Dr. Abhijit Ghosh and Dr. Sk Md Hasan is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arka Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 17, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Morankar, S., Sen, M. et al. A Descriptive Model on the Grain Size Dependence of Deformation and Martensitic Transformation in Austenitic Stainless Steel. Metall Mater Trans A 51, 3886–3905 (2020). https://doi.org/10.1007/s11661-020-05861-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05861-7

Navigation