Skip to main content
Log in

Effects of Size and Distribution of Spheroidized Cementite on Void Initiation in the Punched Surface of Medium-Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of the size and distribution of spheroidized cementite on the characteristics of a punched surface as well as the effect of stress triaxiality on the void initiation at the interface between the cementite (θ) and ferrite matrix under shearing deformation. Punching and interrupted punching tests were conducted with two types of annealed medium-carbon steels, θL and θS, which contained large and small cementite particles at low and high densities, respectively. The microstructural deformation in the interrupted punching test was simulated by the finite-element (FE) method. Based on the scanning electron microscopy (SEM) images of the microstructures and microstructural FE models, the stress triaxiality around cementite was identified as an important factor for void initiation. Moreover, the microstructural FE models indicated that a large number of cementite particles reduce the stress triaxiality around them. This mechanism explains why the number of voids in an area away from the surface of θS is smaller than that in an area away from the surface of θL. In contrast, the number of voids near the punched surface was larger in θS than that in θL, owing to the high stress triaxiality caused by the large shearing deformation. The stress triaxiality tended to change the critical equivalent plastic strain for void initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. AUTOGRAPH and TRVIEWX are trademarks of Shimadzu Corp.

  3. WinROOF is a trademark of Mitani Corp. Tokyo.

References

  1. S. Yu, X. Xie, J. Zhang, and Z. Zhao: J. Mater. Process. Technol., 2007, vols. 187–188, pp. 169–72.

    Article  Google Scholar 

  2. Z. Hamedon, Y. Abe, K. Mori, and N. Nakagawa: Proc. Manuf., 2018, vol. 15, pp. 612–18.

    Google Scholar 

  3. A. Lara, I. Picas, and D. Casellas: J. Mater. Process. Technol., 2013, vol. 213, pp. 1908–19.

    Article  CAS  Google Scholar 

  4. D.J. Thomas: J. Fail. Anal. Prev., 2012, vol. 12, pp. 518–31.

    Article  Google Scholar 

  5. Z. Tekiner, M. Nalbant, and H. Gurun: Mater. Des., 2006, vol. 27, pp. 1134–38.

    Article  CAS  Google Scholar 

  6. S. Qin, L. Yang, and J. Peng: Appl. Mech. Mater., 2009, vols. 16–19, pp. 495–99.

    Article  Google Scholar 

  7. T. Tanaka, S. Hagihara, Y. Tadano, S. Yoshimura, T. Inada, T. Mori, and K. Fuchiwaki: Mater. Trans. JIM, 2011, vol. 52, pp. 447–51.

    Article  CAS  Google Scholar 

  8. X. Wu, H. Bahmanpour, and K. Schmid: J. Mater. Process. Technol., 2012, vol. 212, pp. 1209–24.

    Article  CAS  Google Scholar 

  9. J.A. Soares, M.L. Gipiela, S.F. Lajarin, and P.V.P. Marcondes: Int. J. Adv. Manuf. Technol., 2013, vol. 65, pp. 451–57.

    Article  Google Scholar 

  10. Y. Ito and Y. Nakazawa: J. JSTP, 2010, vol. 51, pp. 1063–67.

    Article  CAS  Google Scholar 

  11. R. Nishimura, Y. Ito, M. Nakata, and Y. Nakazawa: J. JSTP, 2016, vol. 57, pp. 1062–69.

    Article  Google Scholar 

  12. K. Takashima, K. Hasegawa, Y. Toji, and Y. Funakawa: ISIJ Int., 2017, vol. 57, pp. 1289–94.

    Article  CAS  Google Scholar 

  13. M. Maeda, J. Shimamura, and S. Suzuki: ISIJ Int., 2018, vol. 58, pp. 1490–99.

    Article  Google Scholar 

  14. R. Okamoto, Y. Taniguchi, and Y. Fukuyama: CAMP-ISIJ, 2005, vol. 18, p. 540.

    Google Scholar 

  15. T. Okano, K. Sakumoto, K. Yamazaki, S. Toyoda, and S. Suzuki: Key Eng. Mater., 2016, vol. 716, pp. 643–51.

    Article  Google Scholar 

  16. S. Wang, Z. Chen, and C. Dong: Int. J. Mech. Sci., 2017, vol. 133, pp. 288–302.

    Article  Google Scholar 

  17. J. Mediavilla, R.H.J. Peerlings, and M.G.D. Geers: Eng. Fract. Mech., 2006, vol. 73, pp. 895–16.

    Article  Google Scholar 

  18. H. Mao, F. Zhou, Y. Liu, and L. Hua: J. Manuf. Process., 2016, vol. 24, pp. 90–99.

    Article  Google Scholar 

  19. T. Matsuno, C. Teodosiu, D. Maeda, and A. Uenishi: Int. J. Plast., 2015, vol. 74, pp. 17–34.

    Article  CAS  Google Scholar 

  20. X. Hu, D.S. Wilkinson, M. Jain, and R.K. Mishra: Int. J. Solids Struct., 2009, vol. 46, pp. 2650–58.

    Article  Google Scholar 

  21. D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector, Jr., and A. Bower: Int. J. Fract., 2018, vol. 209, pp. 3–26.

    Article  CAS  Google Scholar 

  22. S. Ma, X. Zhuang, and Z. Zhao: Steel Res. Int., 2016, vol. 87, pp. 1489–1502.

    Article  CAS  Google Scholar 

  23. Z. Xincun, M. Siming, and Z. Zhen: Int. J. Mech. Sci., 2017, vols. 128–129, pp. 414–27.

    Google Scholar 

  24. C. Inoue, K. Saito, K. Yamazaki, S. Goto, M. Takamura, S. Mihara, and S. Suzuki: Proc. Int. Conf. Mater. Proc. Tech., 2019, pp. 86-90.

  25. G. Krauss: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781–92.

    Article  Google Scholar 

  26. K. Sakumoto, K. Yamazaki, T. Kobayashi, and S. Suzuki: Key Eng. Mater., 2014, vols. 622–623, pp. 1075–80.

    Article  Google Scholar 

  27. JIS Z 2241, Japanese Industrial Standards Committee, Tokyo, 2011.

  28. M. Takamura, T. Ozaki, Y. Miyoshi, H. Sunaga, and S. Takahashi: Proc. 10th Int. Conf. Techn. Plast., 2011, pp. 591–95.

  29. M. Banu, M. Takamura, T. Hama, O. Naidim, C. Teodosiu, and A. Makinouchi: J. Mater. Process. Technol., 2006, vol. 173, pp. 178–84.

    Article  CAS  Google Scholar 

  30. R.H. Wagoner and J.-L. Chenot: Metal Forming Analysis, Cambridge University Press, Cambridge, United Kingdom, 2001, pp. 82–84.

    Book  Google Scholar 

  31. K. Shibanuma, S. Aihara, and S. Ohtsuka: Tetsu-to-Hagané, 2013, vol. 99, pp. 582–91.

    Article  CAS  Google Scholar 

  32. D. Brokken, W.A.M. Brecelnams, and F.P.T. Baaijens: J. Mater. Process. Technol., 1998, vol. 83, pp. 192–99.

    Article  Google Scholar 

  33. K. Nahshon and Z. Xue: Eng. Fract. Mech., 2009, vol. 76, pp. 997–1009.

    Article  Google Scholar 

  34. M. Kim, J. Shin, Y. Choi, and S. Lee: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1761–69.

    Article  Google Scholar 

  35. D. Kwon and R.J. Asaro: Metall. Trans. A, 1990, vol. 21A, pp. 117–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Saito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, K., Inoue, C., Ikegawa, J. et al. Effects of Size and Distribution of Spheroidized Cementite on Void Initiation in the Punched Surface of Medium-Carbon Steel. Metall Mater Trans A 51, 4499–4510 (2020). https://doi.org/10.1007/s11661-020-05854-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05854-6

Navigation