Skip to main content

Advertisement

Log in

Effect of Annealing on the Microstructure, Texture and Mechanical Properties of a Dual-Phase Ultrahigh-strength TWIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study investigates the effect of annealing time and temperature on the microstructural restoration (by recovery and recrystallization), texture evolution and tensile properties of a dual-phase TWIP steel. The samples, which were initially hot rolled-air cooled followed by being in solution treated condition, subsequent 50 pct cold rolled condition and different annealing conditions (temperatures ranging from 500 °C to 1000 °C for 5 minutes to 2 hours), were subjected to microstructural characterization using optical and transmission electron microscopy, electron backscatter diffraction analysis, tensile testing and fractographic study. The deformation-induced ferrite (DIF) transformation due to cold deformation, the evolution of the grain structure and texture in both austenite and ferrite, and the change in the DIF fraction (accompanying the recrystallization annealing treatment) are critically analyzed. The optimum combination of strength and ductility is achieved in the partially recrystallized samples annealed at 700 °C for 30 minutes (UTS: 859 MPa, total elongation: 37 pct) and 900 °C for 30 minutes (UTS: 708 MPa, total elongation: 63 pct).The effects of DIF on the evolution of microstructure and texture during annealing and the final properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Lan and J. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 147-161.

    Google Scholar 

  2. P. Kürnsteiner, C. Commenda, E. Arenholz, L. Samek, D. Stifter and H. Groiss: Materialia, 2018, vol. 1, pp. 70-77.

    Google Scholar 

  3. P. J. Gibbs, E. De Moor, M. J. Merwin, B. Clausen, J. G. Speer and D. K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-3702.

    Google Scholar 

  4. G. M. de Bellefon, M.N. Gussev, A.D. Stoica, J.C. van Duysen and K. Sridharan: Scr. Mater., 2018, vol. 157, pp. 162-166.

    Google Scholar 

  5. O. Grässel, L Krüger, G Frommeyer and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-1409.

    Google Scholar 

  6. M. Bobbykannan, R.K. Singhraman and S. Khoddam: Corr. Sci., 2008, vol. 50, pp. 2879-2884.

    Google Scholar 

  7. YS Chun, K-T Park, CS Lee: Scripta Mater, 2012, vol. 66, pp. 960-965.

    CAS  Google Scholar 

  8. K. Jeong, J-E. Jin, Y-S. Jung, S. Kang and Y-K. Lee: Acta Mater., 2013, vol. 61, pp. 3399-3410.

    CAS  Google Scholar 

  9. E. Kozeschnik and H. K. D. H. Bhadeshia: Mater. Sci. Technol., 2008, vol. 24, pp. 343-347.

    CAS  Google Scholar 

  10. D. T. Pierce, D. R. Coughlin, K. D. Clarke, E. De Moor, J. Poplawsky, D. L. Williamson, B. Mazumder, J. G. Speer, A. Hood and A. J. Clarke: Acta Mater., 2018, vol. 151, pp.454-469.

    CAS  Google Scholar 

  11. D. T. Pierce, D. R. Coughlin, D. L.Williamson, J. Kähkönen, A. J. Clarke, K. D. Clarke, J. G. Speer and E. De Moor: Scr. Mater., 2016, vol. 121, pp. 5-9.

    CAS  Google Scholar 

  12. L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang and A. Shan: Metall. Mater. Trans. A, 2017, vol.48, pp 2179-2192.

    Google Scholar 

  13. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 246-249.

    Google Scholar 

  14. G. Dini, A. Najafizadeh, R. Ueji and S. M. Monir-Vaghef: Mater. Des., 2010, vol. 31 pp. 3395-3402.

    CAS  Google Scholar 

  15. E. Bagherpour, M. Reihanian and R. Ebrahimi: Mater. Des., 2012, vol. 36, pp. 391-395.

    CAS  Google Scholar 

  16. C.Y. Sun, N. Guo, M.W. Fu and S.W. Wang: Int. J. Plast., 2016, vol. 76, pp. 186-212.

    CAS  Google Scholar 

  17. Z. C. Luo and M. X. Huang: Scr. Mater., 2018, vol. 142, pp. 28-31.

    CAS  Google Scholar 

  18. N. K. Tewary, S. K. Ghosh, S. Chatterjee and A. Ghosh: Mater. Sci. Eng. A, 2018, vol. 733, pp. 43-58.

    CAS  Google Scholar 

  19. X. Li, L. Chen, Y. Zhao and R. D. K. Misra: Mater. Des., 2018, vol. 142, pp. 190-202.

    CAS  Google Scholar 

  20. D. B. Santos, A. Saleh, A. A. Gazder, A. Carman, D. M. Duarte, É. A. S. Ribeiro, B. M. Gonzalez, and E. V. Pereloma: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3545-3555.

    Google Scholar 

  21. D. P. Escobar, S. S. F. de Dafé and D. B. Santos: J. Mater Res. Technol., 2015, vol. 4 pp. 162-170.

    Google Scholar 

  22. Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase and D. A. Molodov: Mater. Charact., 2016, vol. 112, pp. 180-187.

    CAS  Google Scholar 

  23. J. Zhang, D. Raabe and C. C. Tasan: Acta Mater., 2017, vol. 141, pp. 374-387.

    CAS  Google Scholar 

  24. A. Mohamadizadeh, A. Zarei-Hanzaki, A. Kisko and D. Porter: Mater. Des., vol. 92, 2016, pp. 322-329.

    CAS  Google Scholar 

  25. B. Bhattacharya, R. K. Ray and T. Leffers: Metall. Mater. Trans. A, vol. 46, 2015, pp. 5296-5307.

    Google Scholar 

  26. Y. F. Shen, C. H. Qiu, L. Wang, X. Sun, X.M. Zhao and L. Zuo: Mater. Sci. Eng. A, vol. 561, 2013, pp. 329-337

    CAS  Google Scholar 

  27. A. A. Saleh, E. V. Pereloma, A. A. Gazder: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4537-4549.

    Google Scholar 

  28. Y. Lü, D. A. Molodov and G. Gottstein: Acta Mater., 2011, vol. 59, pp. 3229-3243.

    Google Scholar 

  29. N. K. Tewary, S. K. Ghosh, S. Bera, D. Chakrabarti and S. Chatterjee: Mater. Sci. Eng. A, 2014, vol. 615, pp. 405-415.

    CAS  Google Scholar 

  30. V. Torabinejad, A. Zarei-Hanzaki, M. Sabet and H.R. Abedi: Mater. Des., 2011, vol. 32, pp. 2345-2349.

    CAS  Google Scholar 

  31. V. Torabinejad, A. Zarei-Hanzaki, S. Moemeni and A. Imandoust: Mater. Des., 2011, vol. 32, pp. 5015-5021.

    CAS  Google Scholar 

  32. A. Imandoust, A. Zarei-Hanzaki, M. Sabet and H.R. Abedi: Mater. Des., 2012, vol. 40, pp. 556-561.

    CAS  Google Scholar 

  33. M. H. Razmpoosh, A. Zarei-Hanzaki, N. Haghdadi, J-H. Cho, W. J. Kim, S. Heshmati-Manesh: Mater. Sci. Eng. A, 2015, vol. 638, pp. 5-14.

    CAS  Google Scholar 

  34. A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni and P. Changizian: Mater. Des., 2014, vol. 53, pp. 99-105.

    CAS  Google Scholar 

  35. I. N. Levine, Physical Chemistry, 6th Edition, McGraw-Hill higher education, New York, 2008, p. 109.

    Google Scholar 

  36. T. Matsushita, K. Mukai: The First Law of Thermodynamics: Chemical Thermodynamics in Materials Science, Chapter 7, Springer US, Singapore, 2018, pp. 17-22.

    Google Scholar 

  37. C. Zheng, N. Xiao, L. Hao, D. Li and Y. Li: Acta Mater., 2009, vol. 57, pp. 2956-2968.

    CAS  Google Scholar 

  38. N. Xiao, M. Tong, Y. Lan, D. Li and Y. Li: Acta Mater., 2006, vol. 54, pp. 1265-1278.

    CAS  Google Scholar 

  39. X. Sauvage and Y. Ivanisenko: J. Mater. Sci., 2007, vol. 42, pp. 1615-1621.

    CAS  Google Scholar 

  40. L. Zhao, N. Park, Y. Tian, A. Shibata and N. Tsuji: Mater. Res. Lett., 2018, vol. 6, pp. 641-647.

    CAS  Google Scholar 

  41. N. K. Tewary, S. K. Ghosh, R. Saha and S. Chatterjee: Philos. Mag., 2019, vol. 99, pp.2487-2516.

    CAS  Google Scholar 

  42. L. Liu, C. Li, Y. Yang, Z. Luo, C. Song and Q. Zhai: Mater. Sci. Eng. A, 2017, vol. 679, pp. 282-291.

    CAS  Google Scholar 

  43. B. Bhattacharya, A. S. Sharma, S. S. Hazra and R. K. Ray: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1190-1202.

    CAS  Google Scholar 

  44. A. Imandoust, A. Zarei-Hanzaki, K.-L. Ou and C.-H. Yu: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2085-2090.

    CAS  Google Scholar 

  45. E. Welsch, D. Ponge, S.M. Hafezhaghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer and D. Raabe: Acta Mater., 2016, vol. 116, pp. 188-199.

    CAS  Google Scholar 

  46. D. B. Williams, C. B. Carter, Transmission Electron Microscopy, Second Edition, Springer US, Boston, USA, 2009, pp. 262-265.

    Google Scholar 

  47. W. Reick, M. Pohl and A. F. Padilha: Steel Res. Int., 1996, vol. 67, pp. 253-256.

    CAS  Google Scholar 

  48. H. Dong and X. Sun: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 269-276.

    CAS  Google Scholar 

  49. L. Bracke, K. Verbeken, L. Kestens and J. Penning: Acta Mater., 2009, vol. 57, pp. 1512-1524.

    CAS  Google Scholar 

  50. G. W. Yuan and M. X. Huang: Prog. Natur. Sci.: Mater. Int., 2014, vol. 24, pp. 50-55.

    CAS  Google Scholar 

  51. R. Song, D. Ponge, D. Raabe and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845-858.

    CAS  Google Scholar 

  52. F. Berrenberg, C. Haase, L. A. Barrales-Mora and D. A. Molodov: Mater. Sci. Eng. A, 2017, vol. 681, pp. 56-64.

    CAS  Google Scholar 

  53. A. Hamada and J. Kömi: Mater. Sci. Eng. A, 2018, vol. 718, pp. 301-304.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 22, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewary, N.K., Ghosh, S.K., Mandal, A. et al. Effect of Annealing on the Microstructure, Texture and Mechanical Properties of a Dual-Phase Ultrahigh-strength TWIP Steel. Metall Mater Trans A 51, 4483–4498 (2020). https://doi.org/10.1007/s11661-020-05851-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05851-9

Navigation